Kavalali Ege T
Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9111, USA.
J Physiol. 2007 Dec 15;585(Pt 3):669-79. doi: 10.1113/jphysiol.2007.137745. Epub 2007 Aug 9.
Short-term synaptic depression during repetitive activity is a common property of most synapses. Multiple mechanisms contribute to this rapid depression in neurotransmission including a decrease in vesicle fusion probability, inactivation of voltage-gated Ca(2+) channels or use-dependent inhibition of release machinery by presynaptic receptors. In addition, synaptic depression can arise from a rapid reduction in the number of vesicles available for release. This reduction can be countered by two sources. One source is replenishment from a set of reserve vesicles. The second source is the reuse of vesicles that have undergone exocytosis and endocytosis. If the synaptic vesicle reuse is fast enough then it can replenish vesicles during a brief burst of action potentials and play a substantial role in regulating the rate of synaptic depression. In the last 5 years, we have examined the impact of synaptic vesicle reuse on neurotransmission using fluorescence imaging of synaptic vesicle trafficking in combination with electrophysiological detection of short-term synaptic plasticity. These studies have revealed that synaptic vesicle reuse shapes the kinetics of short-term synaptic depression in a frequency-dependent manner. In addition, synaptic vesicle recycling helps maintain the level of neurotransmission at steady state. Moreover, our studies showed that synaptic vesicle reuse is a highly plastic process as it varies widely among synapses and can adapt to changes in chronic activity levels.
重复活动期间的短期突触抑制是大多数突触的共同特性。多种机制导致神经传递的这种快速抑制,包括囊泡融合概率降低、电压门控Ca(2+)通道失活或突触前受体对释放机制的使用依赖性抑制。此外,突触抑制可能源于可用于释放的囊泡数量迅速减少。这种减少可由两个来源抵消。一个来源是一组储备囊泡的补充。第二个来源是经历过胞吐作用和内吞作用的囊泡的再利用。如果突触囊泡再利用足够快,那么它可以在短暂的动作电位爆发期间补充囊泡,并在调节突触抑制速率中发挥重要作用。在过去5年中,我们结合短期突触可塑性的电生理检测,利用突触囊泡运输的荧光成像研究了突触囊泡再利用对神经传递的影响。这些研究表明,突触囊泡再利用以频率依赖的方式塑造短期突触抑制的动力学。此外,突触囊泡循环有助于在稳态下维持神经传递水平。而且,我们的研究表明,突触囊泡再利用是一个高度可塑性的过程,因为它在不同突触之间差异很大,并且可以适应慢性活动水平的变化。