Stieglitz T
Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg-IMTEK, Freiburg, Germany.
Acta Neurochir Suppl. 2007;97(Pt 1):411-8. doi: 10.1007/978-3-211-33079-1_54.
Technical devices have supported physicians in diagnosis, therapy, and rehabilitation since ancient times. Neural prostheses interface parts of the nervous system with technical (micro-) systems to partially restore sensory and motor functions that have been lost due to trauma or diseases. Electrodes act as transducers to record neural signals or to excite neural cells by means of electrical stimulation. The field of neural prostheses has grown over the last decades. An overview of neural prostheses illustrates the opportunities and limitations of the implants and performance in their current size and complexity. The implementation of microsystem technology with integrated microelectronics in neural implants 20 years ago opened new fields of application, but also new design paradigms and approaches with respect to the biostability of passivation and housing concepts and electrode interfaces. Microsystem specific applications in the peripheral nervous system, vision prostheses and brain-machine interfaces show the variety of applications and the challenges in biomedical microsystems for chronic nerve interfaces in new and emerging research fields that bridge neuroscientific disciplines with material science and engineering. Different scenarios are discussed where system complexity strongly depends on the rehabilitation objective and the amount of information that is necessary for the chosen neuro-technical interface.
自古以来,技术设备就在诊断、治疗和康复方面为医生提供支持。神经假体将神经系统的部分与技术(微)系统相连接,以部分恢复因创伤或疾病而丧失的感觉和运动功能。电极作为换能器,用于记录神经信号或通过电刺激来激发神经细胞。在过去几十年中,神经假体领域不断发展。对神经假体的概述展示了植入物在当前尺寸和复杂性方面的机遇、局限性及性能表现。20年前,将集成微电子的微系统技术应用于神经植入物,不仅开辟了新的应用领域,还带来了关于钝化和外壳概念以及电极接口生物稳定性的新设计范式和方法。微系统在周围神经系统、视觉假体和脑机接口中的特定应用,展示了在新兴研究领域中生物医学微系统用于慢性神经接口的各种应用及挑战,这些领域将神经科学学科与材料科学和工程学联系起来。文中讨论了不同的场景,其中系统复杂性很大程度上取决于康复目标以及所选神经技术接口所需的信息量。