Sciriha Irene, Fowler Patrick W
Department of Mathematics, Faculty of Science, University of Malta, Msida, Malta.
J Chem Inf Model. 2007 Sep-Oct;47(5):1763-75. doi: 10.1021/ci700097j. Epub 2007 Aug 10.
A zero eigenvalue in the spectrum of the adjacency matrix of the graph representing an unsaturated carbon framework indicates the presence of a nonbonding pi orbital (NBO). A graph with at least one zero in the spectrum is singular; nonzero entries in the corresponding zero-eigenvalue eigenvector(s) (kernel eigenvectors) identify the core vertices. A nut graph has a single zero in its adjacency spectrum with a corresponding eigenvector for which all vertices lie in the core. Balanced and uniform trivalent (cubic) nut graphs are defined in terms of (-2, +1, +1) patterns of eigenvector entries around all vertices. In balanced nut graphs all vertices have such a pattern up to a scale factor; uniform nut graphs are balanced with scale factor one for every vertex. Nut graphs are rare among small fullerenes (41 of the 10 190 782 fullerene isomers on up to 120 vertices) but common among the small trivalent polyhedra (62 043 of the 398 383 nonbipartite polyhedra on up to 24 vertices). Two constructions are described, one that is conjectured to yield an infinite series of uniform nut fullerenes, and another that is conjectured to yield an infinite series of cubic polyhedral nut graphs. All hypothetical nut fullerenes found so far have some pentagon adjacencies: it is proved that all uniform nut fullerenes must have such adjacencies and that the NBO is totally symmetric in all balanced nut fullerenes. A single electron placed in the NBO of a uniform nut fullerene gives a spin density distribution with the smallest possible (4:1) ratio between most and least populated sites for an NBO. It is observed that, in all nut-fullerene graphs found so far, occupation of the NBO would require the fullerene to carry at least 3 negative charges, whereas in most carbon cages based on small nut cubic polyhedra, the NBO would be the highest occupied molecular orbital (HOMO) for the uncharged system.
表示不饱和碳骨架的图的邻接矩阵谱中的零特征值表明存在非键π轨道(NBO)。谱中至少有一个零的图是奇异的;相应零特征值特征向量(核特征向量)中的非零元素确定核心顶点。坚果图在其邻接谱中有一个单一的零,并有一个相应的特征向量,所有顶点都位于核心中。平衡且均匀的三价(立方)坚果图是根据所有顶点周围特征向量元素的(-2,+1,+1)模式定义的。在平衡坚果图中,所有顶点都具有这样的模式,至多相差一个比例因子;均匀坚果图对于每个顶点都是比例因子为1的平衡图。坚果图在小富勒烯中很少见(在多达120个顶点的10190782个富勒烯异构体中只有41个),但在小三价多面体中很常见(在多达24个顶点的398383个非二分多面体中有62043个)。描述了两种构造,一种推测会产生无限系列的均匀坚果富勒烯,另一种推测会产生无限系列的立方多面体坚果图。到目前为止发现的所有假设的坚果富勒烯都有一些五边形邻接:证明了所有均匀坚果富勒烯都必须有这样的邻接,并且NBO在所有平衡坚果富勒烯中是完全对称的。放置在均匀坚果富勒烯的NBO中的单个电子给出的自旋密度分布在NBO的最多和最少占据位点之间具有尽可能小的(4:1)比例。据观察,在迄今为止发现的所有坚果富勒烯图中,占据NBO将要求富勒烯至少携带3个负电荷,而在大多数基于小坚果立方多面体的碳笼中,NBO将是中性系统的最高占据分子轨道(HOMO)。