Liu Youyi, Shu Hua, Li Ping
State Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
Behav Res Methods. 2007 May;39(2):192-8. doi: 10.3758/bf03193147.
In this article, we present normative data for 2,423 Chinese single-character words. For each word, we report values for the following 15 variables: word frequency, cumulative frequency, homophone density, phonological frequency, age of learning, age of acquisition, number of word formations, number of meanings, number of components, number of strokes, familiarity, concreteness, imageability, regularity, and initial phoneme. To validate the norms, we collected word-naming latencies. Factor analysis and multiple regression analysis show that naming latencies of Chinese single-character words are predicted by frequency, semantics, visual features, and consistency, but not by phonology. These analyses show distinct patterns in word naming between Chinese and alphabetic languages and demonstrate the utility of normative data in the study of nonalphabetic orthographic processing.
在本文中,我们呈现了2423个中文单字的常模数据。对于每个字,我们报告了以下15个变量的值:词频、累积频率、同音异形字密度、语音频率、学习年龄、习得年龄、构词数量、意义数量、部件数量、笔画数量、熟悉度、具体性、可想象性、规则性和首音素。为了验证这些常模,我们收集了字命名潜伏期。因素分析和多元回归分析表明,中文单字的命名潜伏期可由频率、语义、视觉特征和一致性预测,而非语音。这些分析显示了中文和字母语言在字命名方面的不同模式,并证明了常模数据在非字母正字法加工研究中的效用。