Oesterhelt Christine, Klocke Susanne, Holtgrefe Simone, Linke Vera, Weber Andreas P M, Scheibe Renate
Department of Plant Physiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str 24-25, D-14476, Potsdam-Golm, Germany.
Plant Cell Physiol. 2007 Sep;48(9):1359-73. doi: 10.1093/pcp/pcm108. Epub 2007 Aug 14.
Redox modulation is a general mechanism for enzyme regulation, particularly for the post-translational regulation of the Calvin cycle in chloroplasts of green plants. Although red algae and photosynthetic protists that harbor plastids of red algal origin contribute greatly to global carbon fixation, relatively little is known about post-translational regulation of chloroplast enzymes in this important group of photosynthetic eukaryotes. To address this question, we used biochemistry, phylogenetics and analysis of recently completed genome sequences. We studied the functionality of the chloroplast enzymes phosphoribulokinase (PRK, EC 2.7.1.19), NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (NADP-GAPDH, GapA, EC 1.2.1.13), fructose 1,6-bisphosphatase (FBPase, EC 3.1.3.11) and glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49), as well as NADP-malate dehydrogenase (NADP-MDH, EC 1.1.1.37) in the unicellular red alga Galdieria sulphuraria (Galdieri) Merola. Despite high sequence similarity of G. sulphuraria proteins to those of other photosynthetic organisms, we found a number of distinct differences. Both PRK and GAPDH co-eluted with CP12 in a high molecular weight complex in the presence of oxidized glutathione, although Galdieria CP12 lacks the two cysteines essential for the formation of the N-terminal peptide loop present in higher plants. However, PRK inactivation upon complex formation turned out to be incomplete. G6PDH was redox modulated, but remained in its tetrameric form; FBPase was poorly redox regulated, despite conservation of the two redox-active cysteines. No indication for the presence of plastidic NADP-MDH (and other components of the malate valve) was found.
氧化还原调节是酶调节的一种普遍机制,特别是对于绿色植物叶绿体中卡尔文循环的翻译后调节。尽管含有红藻来源质体的红藻和光合原生生物对全球碳固定有很大贡献,但对于这一重要的光合真核生物群体中叶绿体酶的翻译后调节,我们了解得相对较少。为了解决这个问题,我们运用了生物化学、系统发育学以及对最近完成的基因组序列的分析。我们研究了单细胞红藻硫养加尔迪氏藻(Galdieria sulphuraria (Galdieri) Merola)中叶绿体酶磷酸核酮糖激酶(PRK,EC 2.7.1.19)、NADP依赖的甘油醛-3-磷酸脱氢酶(NADP-GAPDH,GapA,EC 1.2.1.13)、果糖-1,6-二磷酸酶(FBPase,EC 3.1.3.11)、葡萄糖-6-磷酸脱氢酶(G6PDH,EC 1.1.1.49)以及NADP-苹果酸脱氢酶(NADP-MDH,EC 1.1.1.37)的功能。尽管硫养加尔迪氏藻的蛋白质与其他光合生物的蛋白质在序列上有高度相似性,但我们发现了许多明显的差异。在氧化型谷胱甘肽存在的情况下,PRK和GAPDH都与CP12在高分子量复合物中共同洗脱,尽管加尔迪氏藻的CP12缺乏高等植物中形成N端肽环所必需的两个半胱氨酸。然而,复合物形成后PRK的失活并不完全。G6PDH受到氧化还原调节,但仍保持其四聚体形式;尽管两个氧化还原活性半胱氨酸保守,但FBPase的氧化还原调节较差。未发现存在质体NADP-MDH(以及苹果酸阀的其他成分)的迹象。