Blake Robert W, Chan Keith H S
Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
J Exp Biol. 2007 Sep;210(Pt 17):2979-89. doi: 10.1242/jeb.006437.
Synodontis nigriventris is a surface-feeding facultative air-breather that swims inverted with its zoological ventral side towards the water surface. Their near-surface drag is about double the deeply submerged drag (due to wave drag) and roughly twice the sum of frictional and pressure drags. For streamlined technical bodies, values of wave drag augmentation near the surface may be five times the deeply submerged values. However, the depth dependence of drag is similar for fish and streamlined technical bodies, with augmentation vanishing at about 3 body diameters below the surface. Drag ;inverted' is approximately 15% less than that ;dorsal side up' near the surface. Consistent with this, at any given velocity, tailbeat frequency is lower and stride length higher for inverted swimming in surface proximity (P<0.05). Deeply submerged, there are no significant differences in drag and kinematics between postures (P>0.05). At the critical Froude number of 0.45, speeds in surface proximity correspond to prolonged swimming that ends in fatigue. To exceed these speeds, the fish must swim deeply submerged and this behaviour is observed. Inverted swimming facilitates efficient air breathing. Drag dorsal side up during aquatic surface respiration is 1.5 times the value for the inverted posture. Fast-starts are rectilinear, directly away from the stimulus. Average and maximum velocity and acceleration decrease in surface proximity (P<0.05) and are higher inverted (maximum acceleration: 20-30 m s(-2); P<0.05) and comparable to locomotor generalists (e.g. trout). Mechanical energy losses due to wave generation are about 20% for inverted and 40% for dorsal side up, and lower than for trout fast-starting in shallow water (70% losses); bottom effects and large amplitude C-starts (c.f. relatively low amplitude rectilinear motions in S. nigriventris) enhance resistance in trout. S. nigriventris probably evolved from a diurnal or crepuscular 'Chiloglanis-like' benthic ancestor. Nocturnality and reverse countershading likely co-evolved with the inverted habit. Presumably, the increased energy cost of surface swimming is offset by exploiting the air-water interface for food and/or air breathing.
黑腹歧须鮠是一种在水面摄食的兼性空气呼吸者,它腹部朝上倒游,动物学意义上的腹侧朝向水面。它们在水面附近的阻力约为深度下潜阻力的两倍(由于波浪阻力),大致是摩擦阻力和压力阻力之和的两倍。对于流线型技术物体,水面附近的波浪阻力增加值可能是深度下潜值的五倍。然而,鱼类和流线型技术物体的阻力随深度的变化规律相似,在水面以下约3个身体直径处,阻力增加值消失。“腹部朝上倒游”的阻力比水面附近“背部朝上”的阻力约小15%。与此一致的是,在任何给定速度下,靠近水面倒游时的尾鳍摆动频率较低,步幅较大(P<0.05)。在深度下潜时,两种姿势的阻力和运动学参数没有显著差异(P>0.05)。在临界弗劳德数0.45时,靠近水面的速度对应着持续游泳直至疲劳。为了超过这些速度,这种鱼必须在深度下潜状态游泳,且观察到了这种行为。倒游有助于高效呼吸空气。在水面呼吸时“背部朝上”的阻力是“腹部朝上倒游”姿势阻力的1.5倍。快速启动是直线的,直接远离刺激源。靠近水面时,平均速度、最大速度和加速度降低(P<0.05),“腹部朝上倒游”时更高(最大加速度:20 - 30 m s(-2);P<0.05),与一般运动能力的鱼类(如鳟鱼)相当。倒游时因波浪产生的机械能损失约为20%,“背部朝上”时为40%,低于鳟鱼在浅水中快速启动时的损失(70%);底部效应和大幅度的C型启动(与黑腹歧须鮠相对较低幅度的直线运动相比)增加了鳟鱼的阻力。黑腹歧须鮠可能从日行性或晨昏性的“似奇唇鮠属”底栖祖先演化而来。夜行性和反向反荫蔽可能与倒游习性共同演化。据推测,通过利用空气 - 水界面获取食物和/或呼吸空气,抵消了水面游泳增加的能量成本。