Finzi Adrien C, Norby Richard J, Calfapietra Carlo, Gallet-Budynek Anne, Gielen Birgit, Holmes William E, Hoosbeek Marcel R, Iversen Colleen M, Jackson Robert B, Kubiske Mark E, Ledford Joanne, Liberloo Marion, Oren Ram, Polle Andrea, Pritchard Seth, Zak Donald R, Schlesinger William H, Ceulemans Reinhart
Department of Biology, Boston University, Boston, MA 02215, USA.
Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):14014-9. doi: 10.1073/pnas.0706518104. Epub 2007 Aug 20.
Forest ecosystems are important sinks for rising concentrations of atmospheric CO(2). In previous research, we showed that net primary production (NPP) increased by 23 +/- 2% when four experimental forests were grown under atmospheric concentrations of CO(2) predicted for the latter half of this century. Because nitrogen (N) availability commonly limits forest productivity, some combination of increased N uptake from the soil and more efficient use of the N already assimilated by trees is necessary to sustain the high rates of forest NPP under free-air CO(2) enrichment (FACE). In this study, experimental evidence demonstrates that the uptake of N increased under elevated CO(2) at the Rhinelander, Duke, and Oak Ridge National Laboratory FACE sites, yet fertilization studies at the Duke and Oak Ridge National Laboratory FACE sites showed that tree growth and forest NPP were strongly limited by N availability. By contrast, nitrogen-use efficiency increased under elevated CO(2) at the POP-EUROFACE site, where fertilization studies showed that N was not limiting to tree growth. Some combination of increasing fine root production, increased rates of soil organic matter decomposition, and increased allocation of carbon (C) to mycorrhizal fungi is likely to account for greater N uptake under elevated CO(2). Regardless of the specific mechanism, this analysis shows that the larger quantities of C entering the below-ground system under elevated CO(2) result in greater N uptake, even in N-limited ecosystems. Biogeochemical models must be reformulated to allow C transfers below ground that result in additional N uptake under elevated CO(2).
森林生态系统是大气中二氧化碳浓度上升的重要汇。在之前的研究中,我们发现,当四座实验森林在本世纪后半叶预测的大气二氧化碳浓度条件下生长时,其净初级生产力(NPP)增加了23±2%。由于氮(N)的可利用性通常会限制森林生产力,因此,在自由空气二氧化碳浓度升高(FACE)的情况下,为维持森林高NPP速率,需要土壤中氮吸收增加和树木对已吸收氮的利用效率提高这二者的某种组合。在本研究中,实验证据表明,在莱茵兰德、杜克和橡树岭国家实验室FACE站点,二氧化碳浓度升高时氮的吸收增加,然而,在杜克和橡树岭国家实验室FACE站点进行的施肥研究表明,树木生长和森林NPP受到氮可利用性的强烈限制。相比之下,在POP-EUROFACE站点,二氧化碳浓度升高时氮利用效率增加,在该站点进行的施肥研究表明,氮对树木生长并不构成限制。细根产量增加、土壤有机质分解速率加快以及碳(C)向菌根真菌的分配增加等因素的某种组合,可能是二氧化碳浓度升高时氮吸收增加的原因。无论具体机制如何,该分析表明,即使在氮限制的生态系统中,二氧化碳浓度升高时进入地下系统的大量碳也会导致氮吸收增加。必须重新构建生物地球化学模型,以允许碳向地下转移,从而在二氧化碳浓度升高时导致额外的氮吸收。