Suppr超能文献

通透性在药物吸收、分布、代谢、排泄/药代动力学、相互作用及毒性中的作用——一种基于通透性的人类吸收、分布、代谢、排泄/药代动力学预测分类系统(PCS)介绍

The role of permeability in drug ADME/PK, interactions and toxicity--presentation of a permeability-based classification system (PCS) for prediction of ADME/PK in humans.

作者信息

Fagerholm Urban

机构信息

Clinical Pharmacology, AstraZeneca R&D Södertälje, S-151 85, Södertälje, Sweden.

出版信息

Pharm Res. 2008 Mar;25(3):625-38. doi: 10.1007/s11095-007-9397-y. Epub 2007 Aug 21.

Abstract

PURPOSE

The objective was to establish in vitro passive permeability (Pe) vs in vivo fraction absorbed (fa)-relationships for each passage through the human intestine, liver, renal tubuli and brain, and develop a Pe-based ADME/PK classification system (PCS).

MATERIALS AND METHODS

Pe- and intestinal fa-data were taken from an available data set. Hepatic fa was calculated based on extraction ratios of the unbound fraction of drugs (with support from animal in vivo uptake data). Renal fa (reabsorption) was estimated using renal pharmacokinetic data, and brain fa was predicted using animal in vitro and in vivo brain Pe-data. Hepatic and intestinal fa-data were used to predict bile excretion potential.

RESULTS

Relationships were established, including predicted curves for bile excretion potential and minimum oral bioavailability, and a 4-Class PCS was developed: I (very high Pe; elimination mainly by metabolism); II (high Pe) and III (intermediate Pe and incomplete fa); IV (low Pe and fa). The system enables assessment of potential drug-drug transport interactions, and drug and metabolite organ trapping.

CONCLUSIONS

The PCS and high quality Pe-data (with and without active transport) are believed to be useful for predictions and understanding of ADME/PK, elimination routes, and potential interactions and organ trapping/toxicity in humans.

摘要

目的

目的是建立药物每次通过人体肠道、肝脏、肾小管和脑时的体外被动通透性(Pe)与体内吸收分数(fa)之间的关系,并开发一种基于Pe的药物吸收、分布、代谢和排泄/药代动力学分类系统(PCS)。

材料与方法

Pe和肠道fa数据取自现有数据集。肝脏fa是根据药物未结合部分的提取率计算得出(并得到动物体内摄取数据的支持)。肾脏fa(重吸收)使用肾脏药代动力学数据估算,脑fa使用动物体外和体内脑Pe数据预测。肝脏和肠道fa数据用于预测胆汁排泄潜力。

结果

建立了相关关系,包括胆汁排泄潜力和最低口服生物利用度的预测曲线,并开发了一个4类PCS:I(非常高的Pe;主要通过代谢消除);II(高Pe)和III(中等Pe且fa不完全);IV(低Pe和fa)。该系统能够评估潜在的药物-药物转运相互作用以及药物和代谢物在器官中的滞留情况。

结论

PCS和高质量的Pe数据(有或无主动转运)被认为有助于预测和理解人体中的药物吸收、分布、代谢和排泄/药代动力学、消除途径以及潜在的相互作用和器官滞留/毒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验