Jia Da, Jurkowska Renata Z, Zhang Xing, Jeltsch Albert, Cheng Xiaodong
Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA.
Nature. 2007 Sep 13;449(7159):248-51. doi: 10.1038/nature06146. Epub 2007 Aug 22.
Genetic imprinting, found in flowering plants and placental mammals, uses DNA methylation to yield gene expression that is dependent on the parent of origin. DNA methyltransferase 3a (Dnmt3a) and its regulatory factor, DNA methyltransferase 3-like protein (Dnmt3L), are both required for the de novo DNA methylation of imprinted genes in mammalian germ cells. Dnmt3L interacts specifically with unmethylated lysine 4 of histone H3 through its amino-terminal PHD (plant homeodomain)-like domain. Here we show, with the use of crystallography, that the carboxy-terminal domain of human Dnmt3L interacts with the catalytic domain of Dnmt3a, demonstrating that Dnmt3L has dual functions of binding the unmethylated histone tail and activating DNA methyltransferase. The complexed C-terminal domains of Dnmt3a and Dnmt3L showed further dimerization through Dnmt3a-Dnmt3a interaction, forming a tetrameric complex with two active sites. Substitution of key non-catalytic residues at the Dnmt3a-Dnmt3L interface or the Dnmt3a-Dnmt3a interface eliminated enzymatic activity. Molecular modelling of a DNA-Dnmt3a dimer indicated that the two active sites are separated by about one DNA helical turn. The C-terminal domain of Dnmt3a oligomerizes on DNA to form a nucleoprotein filament. A periodicity in the activity of Dnmt3a on long DNA revealed a correlation of methylated CpG sites at distances of eight to ten base pairs, indicating that oligomerization leads Dnmt3a to methylate DNA in a periodic pattern. A similar periodicity is observed for the frequency of CpG sites in the differentially methylated regions of 12 maternally imprinted mouse genes. These results suggest a basis for the recognition and methylation of differentially methylated regions in imprinted genes, involving the detection of both nucleosome modification and CpG spacing.
基因印记存在于开花植物和胎盘哺乳动物中,它利用DNA甲基化产生依赖于亲本来源的基因表达。DNA甲基转移酶3a(Dnmt3a)及其调节因子DNA甲基转移酶3样蛋白(Dnmt3L),都是哺乳动物生殖细胞中印迹基因从头DNA甲基化所必需的。Dnmt3L通过其氨基末端类植物同源结构域(PHD)特异性地与组蛋白H3的未甲基化赖氨酸4相互作用。在这里,我们利用晶体学表明,人Dnmt3L的羧基末端结构域与Dnmt3a的催化结构域相互作用,证明Dnmt3L具有结合未甲基化组蛋白尾部和激活DNA甲基转移酶的双重功能。Dnmt3a和Dnmt3L复合的C末端结构域通过Dnmt3a-Dnmt3a相互作用进一步二聚化,形成具有两个活性位点的四聚体复合物。在Dnmt3a-Dnmt3L界面或Dnmt3a-Dnmt3a界面替换关键的非催化残基消除了酶活性。DNA-Dnmt3a二聚体的分子模型表明,两个活性位点被大约一个DNA螺旋圈隔开。Dnmt3a的C末端结构域在DNA上寡聚形成核蛋白丝。Dnmt3a对长DNA的活性周期性揭示了八到十个碱基对距离处甲基化CpG位点的相关性,表明寡聚化导致Dnmt3a以周期性模式甲基化DNA。在12个母源印记的小鼠基因的差异甲基化区域中,CpG位点的频率也观察到类似的周期性。这些结果为印记基因中差异甲基化区域的识别和甲基化提供了一个基础,涉及核小体修饰和CpG间距的检测。