Breiden Bernadette, Gallala Hichem, Doering Thomas, Sandhoff Konrad
LIMES, Membrane Biology & Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
Eur J Cell Biol. 2007 Dec;86(11-12):657-73. doi: 10.1016/j.ejcb.2007.02.006. Epub 2007 Aug 21.
Epidermal differentiation results in the formation of the extracellular lipid barrier in the stratum corneum, which mainly consists of ceramides, free fatty acids, and cholesterol. Differentiating keratinocytes of the stratum granulosum synthesize a series of complex long-chain ceramides and glucosylceramides with different chain lengths and hydroxylation patterns at intracellular membranes of the secretory pathway. Formation of complex extracellular ceramides parallels the transition of keratinocytes from the stratum granulosum to the stratum corneum, where their precursors, complex glucosylceramides and sphingomyelin, are secreted and exposed to extracellular lysosomal lipid hydrolases. Submerged cultures used so far showed a reduced ceramide content compared to the native epidermis or the air-exposed, organotypic culture system. In order to investigate the sphingolipid metabolism during keratinocyte differentiation, we optimized a simple cell culture system to generate the major barrier sphingolipids. This optimized model is based on the chemically well-defined serum-free MCDB medium. At low calcium ion concentrations (0.1mM), keratinocytes proliferate and synthesize mainly Cer(NS) and a small amount of Cer(NP). Supplementation of the MCDB cell culture medium with calcium ions (1.1mM) and 10 microM linoleic acid triggered differentiation of keratinocytes and synthesis of a complex pattern of free and covalently bound ceramides as found in native epidermis or air-exposed organotypic cultures, though at a reduced level. The mRNA levels of the differentiation markers keratin 10 and profilaggrin increased, as well as those of ceramide glucosyltransferase and glucosylceramide-beta-glucosidase. The described culture system was thus suitable for biochemical studies of the sphingolipid metabolism during keratinocyte differentiation. The addition of serum or vitamin A to the medium resulted in a decrease in ceramide and glucosylceramide content. Lowering the medium pH to 6, while maintained cell viability, led to an increase in the processing of probarrier lipids glucosylceramide and sphingomyelin to free ceramides and protein-bound ceramide Cer(OS).
表皮分化导致角质形成层中细胞外脂质屏障的形成,该屏障主要由神经酰胺、游离脂肪酸和胆固醇组成。颗粒层中正在分化的角质形成细胞在分泌途径的细胞内膜上合成一系列具有不同链长和羟基化模式的复杂长链神经酰胺和葡萄糖神经酰胺。复杂细胞外神经酰胺的形成与角质形成细胞从颗粒层到角质层的转变同时发生,在角质层中,它们的前体、复杂的葡萄糖神经酰胺和鞘磷脂被分泌出来,并暴露于细胞外溶酶体脂质水解酶中。与天然表皮或暴露于空气中的器官型培养系统相比,迄今为止使用的浸没培养显示神经酰胺含量降低。为了研究角质形成细胞分化过程中的鞘脂代谢,我们优化了一种简单的细胞培养系统以生成主要的屏障鞘脂。这种优化模型基于化学成分明确的无血清MCDB培养基。在低钙离子浓度(0.1mM)下,角质形成细胞增殖并主要合成神经酰胺(NS)和少量神经酰胺(NP)。向MCDB细胞培养基中添加钙离子(1.1mM)和10微摩尔亚油酸会触发角质形成细胞的分化,并合成在天然表皮或暴露于空气中的器官型培养物中发现的复杂模式的游离和共价结合的神经酰胺,尽管水平有所降低。分化标志物角蛋白10和兜甲蛋白的mRNA水平以及神经酰胺葡萄糖基转移酶和葡萄糖神经酰胺-β-葡萄糖苷酶的mRNA水平均升高。因此,所描述的培养系统适用于角质形成细胞分化过程中鞘脂代谢的生化研究。向培养基中添加血清或维生素A会导致神经酰胺和葡萄糖神经酰胺含量降低。将培养基pH值降至6,同时保持细胞活力,会导致前体屏障脂质葡萄糖神经酰胺和鞘磷脂向游离神经酰胺和与蛋白质结合的神经酰胺Cer(OS)的加工增加。