Heidenreich Andreas, Last Isidore, Jortner Joshua
School of Chemistry, Tel-Aviv University, 69978 Tel-Aviv, Israel.
J Chem Phys. 2007 Aug 21;127(7):074305. doi: 10.1063/1.2762217.
We applied theoretical models and molecular dynamics simulations to explore extreme multielectron ionization in Xe(n) clusters (n=2-2171, initial cluster radius R(0)=2.16-31.0 A) driven by ultraintense infrared Gaussian laser fields (peak intensity I(M)=10(15)-10(20) W cm(-2), temporal pulse length tau=10-100 fs, and frequency nu=0.35 fs(-1)). Cluster compound ionization was described by three processes of inner ionization, nanoplasma formation, and outer ionization. Inner ionization gives rise to high ionization levels (with the formation of Xe(q+) with q=2-36), which are amenable to experimental observation. The cluster size and laser intensity dependence of the inner ionization levels are induced by a superposition of barrier suppression ionization (BSI) and electron impact ionization (EII). The BSI was induced by a composite field involving the laser field and an inner field of the ions and electrons, which manifests ignition enhancement and screening retardation effects. EII was treated using experimental cross sections, with a proper account of sequential impact ionization. At the highest intensities (I(M)=10(18)-10(20) W cm(-2)) inner ionization is dominated by BSI. At lower intensities (I(M)=10(15)-10(16) W cm(-2)), where the nanoplasma is persistent, the EII contribution to the inner ionization yield is substantial. It increases with increasing the cluster size, exerts a marked effect on the increase of the Xe(q+) ionization level, is most pronounced in the cluster center, and manifests a marked increase with increasing the pulse length (i.e., becoming the dominant ionization channel (56%) for Xe(2171) at tau=100 fs). The EII yield and the ionization level enhancement decrease with increasing the laser intensity. The pulse length dependence of the EII yield at I(M)=10(15)-10(16) W cm(-2) establishes an ultraintense laser pulse length control mechanism of extreme ionization products.
我们应用理论模型和分子动力学模拟,以探究在超强红外高斯激光场(峰值强度(I(M)=10^{15}-10^{20}) (W\ cm^{-2}),时间脉冲长度(\tau = 10 - 100) (fs),频率(\nu = 0.35) (fs^{-1}))驱动下Xe(n)团簇((n = 2 - 2171),初始团簇半径(R(0)=2.16 - 31.0) (Å))中的极端多电子电离。团簇复合电离由内电离、纳米等离子体形成和外电离三个过程描述。内电离产生高电离水平(形成(q = 2 - 36)的(Xe(q + ))),这便于实验观测。内电离水平对团簇尺寸和激光强度的依赖性是由势垒抑制电离(BSI)和电子碰撞电离(EII)的叠加引起的。BSI由涉及激光场以及离子和电子内场的复合场诱导,表现出点火增强和屏蔽延迟效应。EII使用实验截面进行处理,并适当考虑了顺序碰撞电离。在最高强度((I(M)=10^{18}-10^{20}) (W\ cm^{-2}))下,内电离以BSI为主。在较低强度((I(M)=10^{15}-10^{16}) (W\ cm^{-2}))下,纳米等离子体持续存在,EII对内电离产率的贡献很大。它随着团簇尺寸的增加而增加,对(Xe(q + ))电离水平的增加有显著影响,在团簇中心最为明显,并且随着脉冲长度的增加而显著增加(即在(\tau = 100) (fs)时成为Xe(2171)的主要电离通道(56%))。EII产率和电离水平增强随着激光强度的增加而降低。在(I(M)=10^{15}-10^{16}) (W\ cm^{-2})下EII产率对脉冲长度的依赖性建立了极端电离产物的超强激光脉冲长度控制机制。