Keatinge-Clay Adrian T
Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
Chem Biol. 2007 Aug;14(8):898-908. doi: 10.1016/j.chembiol.2007.07.009.
Because it controls the majority of polyketide stereocenters, the ketoreductase (KR) is a central target in engineering polyketide synthases (PKSs). To elucidate the mechanisms of stereocontrol, the structure of KR from the first module of the tylosin PKS was determined. A comparison with a recently solved erythromycin KR that operates on the same substrate explains why their products have opposite alpha-substituent chiralities. The structure reveals how polyketides are guided into the active site by key residues in different KR types. There are four types of reductase-competent KRs, each capable of fixing a unique combination of alpha-substituent and beta-hydroxyl group chiralities, as well as two types of reductase-incompetent KRs that control alpha-substituent chirality alone. A protocol to assign how a module will enforce substituent chirality based on its sequence is presented.
由于酮还原酶(KR)控制着大多数聚酮化合物的立体中心,因此它是工程化聚酮化合物合酶(PKS)的核心靶点。为了阐明立体控制机制,我们测定了泰乐菌素PKS第一个模块中KR的结构。与最近解析的作用于相同底物的红霉素KR进行比较,解释了为什么它们的产物具有相反的α-取代基手性。该结构揭示了聚酮化合物是如何被不同KR类型中的关键残基引导到活性位点的。有四种具有还原酶活性的KR,每种都能够确定α-取代基和β-羟基手性的独特组合,还有两种不具有还原酶活性的KR,它们仅控制α-取代基手性。本文还提出了一种根据模块序列来确定其如何强制取代基手性的方案。