Sclar C B, Carrison L C, Schwartz C M
Science. 1962 Oct 26;138(3539):525-6. doi: 10.1126/science.138.3539.525.
Infrared spectra of the four-coordinated quartz and coesite polymorphs of SiO(2), the rutile six-coordinated (stishovite) polymorph of SiO(2), and the quartz and rutile polymorphs of GeO(2) show that a change from tetrahedral to octahedral cation coordination results in (i) a 23-per-cent increase in the wavelength of the main absorption band for both the SiO(2) and GeO(2) polymorphs and (ii) a significant increase in the force constant of the same magnitude for the SiO(2) and GeO(2) polymorphs. The quartz and the rutile isostructural pairs for SiO(2) and GeO(2) show that the effect of increasing mass is to increase proportionally the wavelength of the respective main absorption bands. The infrared data for the rutile form of SiO(2) fit the empirical equation of Dachille and Roy relating cation coordination, mass, atomic number, valence, and main absorption wavelength.
二氧化硅的四配位石英和柯石英多晶型物、二氧化硅的金红石六配位(斯石英)多晶型物以及二氧化锗的石英和金红石多晶型物的红外光谱表明,阳离子配位从四面体变为八面体导致:(i)二氧化硅和二氧化锗多晶型物的主吸收带波长增加23%;(ii)二氧化硅和二氧化锗多晶型物的力常数显著增加相同幅度。二氧化硅和二氧化锗的石英与金红石等结构对表明,质量增加的影响是使各自主吸收带的波长成比例增加。二氧化硅金红石形式的红外数据符合达基勒和罗伊关于阳离子配位、质量、原子序数、化合价和主吸收波长的经验方程。