Suppr超能文献

视觉运动对跖屈肌和背屈肌力量变异性的影响。

Visuomotor contribution to force variability in the plantarflexor and dorsiflexor muscles.

作者信息

Tracy Brian L

机构信息

Department of Health and Exercise Science, 220 Moby-B Complex, Colorado State University, Fort Collins, CO 80523-1582, USA.

出版信息

Hum Mov Sci. 2007 Dec;26(6):796-807. doi: 10.1016/j.humov.2007.07.001. Epub 2007 Sep 4.

Abstract

The visual correction employed during isometric contractions of large proximal muscles contributes variability to the descending command and alters fluctuations in muscle force. This study explored the contribution of visuomotor correction to isometric force fluctuations for the more distal dorsiflexor (DF) and plantarflexor (PF) muscles of the ankle. Twenty-one healthy adults performed steady isometric contractions with the DF and PF muscles both with (VIS) and without (NOVIS) visual feedback of the force. The target forces exerted ranged from 2.5% to 80% MVC. The standard deviation (SD) and coefficient of variation (CV) of force was measured from the detrended (drift removed) VIS and NOVIS steadiness trials. Removal of VIS reduced the CV of force by 19% overall. The reduction in fluctuations without VIS was significant across a large range of target forces and was more consistent for the PF than the DF muscles. Thus, visuomotor correction contributes to the variability of force during isometric contractions of the ankle dorsiflexors and plantarflexors.

摘要

在大的近端肌肉等长收缩过程中采用的视觉矫正会给下行指令带来变异性,并改变肌肉力量的波动。本研究探讨了视觉运动矫正对踝关节更远端的背屈肌(DF)和跖屈肌(PF)等长力量波动的影响。21名健康成年人在有(VIS)和无(NOVIS)力量视觉反馈的情况下,对DF和PF肌肉进行稳定的等长收缩。施加的目标力量范围为最大自主收缩(MVC)的2.5%至80%。从去除趋势(去除漂移)的VIS和NOVIS稳定性试验中测量力量的标准差(SD)和变异系数(CV)。去除VIS后,力量的CV总体降低了19%。在大范围的目标力量中,无VIS时波动的降低是显著的,并且对于PF肌肉比DF肌肉更一致。因此,视觉运动矫正会导致踝关节背屈肌和跖屈肌等长收缩过程中力量的变异性。

相似文献

1
Visuomotor contribution to force variability in the plantarflexor and dorsiflexor muscles.
Hum Mov Sci. 2007 Dec;26(6):796-807. doi: 10.1016/j.humov.2007.07.001. Epub 2007 Sep 4.
2
Force control is impaired in the ankle plantarflexors of elderly adults.
Eur J Appl Physiol. 2007 Nov;101(5):629-36. doi: 10.1007/s00421-007-0538-0. Epub 2007 Aug 15.
3
Variability of quadriceps femoris motor neuron discharge and muscle force in human aging.
Exp Brain Res. 2007 May;179(2):219-33. doi: 10.1007/s00221-006-0785-z. Epub 2006 Nov 30.
4
Visuomotor Correction is a Robust Contributor to Force Variability During Index Finger Abduction by Older Adults.
Front Aging Neurosci. 2015 Dec 15;7:229. doi: 10.3389/fnagi.2015.00229. eCollection 2015.
5
Aging, visuomotor correction, and force fluctuations in large muscles.
Med Sci Sports Exerc. 2007 Mar;39(3):469-79. doi: 10.1249/mss.0b013e31802d3ad3.
6
The length of tibialis anterior does not influence force steadiness during submaximal isometric contractions with the dorsiflexors.
Eur J Sport Sci. 2022 Apr;22(4):539-548. doi: 10.1080/17461391.2021.1922506. Epub 2021 May 21.
7
Force control during submaximal isometric contractions is associated with walking performance in persons with multiple sclerosis.
J Neurophysiol. 2020 Jun 1;123(6):2191-2200. doi: 10.1152/jn.00085.2020. Epub 2020 Apr 29.
8
Control of motor output during steady submaximal contractions is modulated by contraction history.
Exp Brain Res. 2024 Mar;242(3):675-683. doi: 10.1007/s00221-023-06774-8. Epub 2024 Jan 23.
9
Effects of Motor and Cognitive Dual-Task Demands on Ankle Dorsiflexor and Plantarflexor Force Control in Older Adults.
Exp Aging Res. 2025 May-Jun;51(3):377-392. doi: 10.1080/0361073X.2024.2406172. Epub 2024 Oct 17.
10
Leg Dominance Does Not Influence Maximal Force, Force Steadiness, or Motor Unit Discharge Characteristics.
Med Sci Sports Exerc. 2022 Aug 1;54(8):1278-1287. doi: 10.1249/MSS.0000000000002921. Epub 2022 Mar 23.

引用本文的文献

1
Influence of visual feedback and cognitive challenge on the age-related changes in force steadiness.
Exp Brain Res. 2024 Jun;242(6):1411-1419. doi: 10.1007/s00221-024-06831-w. Epub 2024 Apr 13.
2
Visual Information Processing in Older Adults: Force Control and Motor Unit Pool Modulation.
J Mot Behav. 2024;56(3):330-338. doi: 10.1080/00222895.2023.2298888. Epub 2023 Dec 28.
3
Corticospinal and spinal adaptations following lower limb motor skill training: a meta-analysis with best evidence synthesis.
Exp Brain Res. 2023 Mar;241(3):807-824. doi: 10.1007/s00221-023-06563-3. Epub 2023 Feb 5.
4
Influence of emotion on precision grip force control: A comparison of pleasant and neutral emotion.
Front Psychol. 2022 Dec 2;13:1038522. doi: 10.3389/fpsyg.2022.1038522. eCollection 2022.
5
Aging and Gait Function: Examination of Multiple Factors that Influence Gait Variability.
Gerontol Geriatr Med. 2022 Feb 24;8:23337214221080304. doi: 10.1177/23337214221080304. eCollection 2022 Jan-Dec.
6
Visual feedback improves bimanual force control performances at planning and execution levels.
Sci Rep. 2021 Oct 27;11(1):21149. doi: 10.1038/s41598-021-00721-9.
7
Force variability is mostly not motor noise: Theoretical implications for motor control.
PLoS Comput Biol. 2021 Mar 8;17(3):e1008707. doi: 10.1371/journal.pcbi.1008707. eCollection 2021 Mar.
8
Neural Correlates of Knee Extension and Flexion Force Control: A Kinetically-Instrumented Neuroimaging Study.
Front Hum Neurosci. 2021 Feb 4;14:622637. doi: 10.3389/fnhum.2020.622637. eCollection 2020.
9
Does pain influence force steadiness? A protocol for a systematic review.
BMJ Open. 2021 Jan 8;11(1):e042525. doi: 10.1136/bmjopen-2020-042525.
10
Effects of online-bandwidth visual feedback on unilateral force control capabilities.
PLoS One. 2020 Sep 17;15(9):e0238367. doi: 10.1371/journal.pone.0238367. eCollection 2020.

本文引用的文献

1
Aging, visuomotor correction, and force fluctuations in large muscles.
Med Sci Sports Exerc. 2007 Mar;39(3):469-79. doi: 10.1249/mss.0b013e31802d3ad3.
2
Variability of quadriceps femoris motor neuron discharge and muscle force in human aging.
Exp Brain Res. 2007 May;179(2):219-33. doi: 10.1007/s00221-006-0785-z. Epub 2006 Nov 30.
3
The amplitude of force variability is correlated in the knee extensor and elbow flexor muscles.
Exp Brain Res. 2007 Jan;176(3):448-64. doi: 10.1007/s00221-006-0631-3. Epub 2006 Aug 4.
4
Visual feedback attenuates force fluctuations induced by a stressor.
Med Sci Sports Exerc. 2005 Dec;37(12):2126-33. doi: 10.1249/01.mss.0000178103.72988.cd.
5
Information processing limitations with aging in the visual scaling of isometric force.
Exp Brain Res. 2006 Apr;170(3):423-32. doi: 10.1007/s00221-005-0225-5. Epub 2005 Nov 23.
6
Prolonged muscle vibration increases stretch reflex amplitude, motor unit discharge rate, and force fluctuations in a hand muscle.
J Appl Physiol (1985). 2005 Nov;99(5):1835-42. doi: 10.1152/japplphysiol.00312.2005. Epub 2005 Jul 14.
8
Fluctuations in plantar flexion force are reduced after prolonged tendon vibration.
J Appl Physiol (1985). 2004 Dec;97(6):2090-7. doi: 10.1152/japplphysiol.00560.2004. Epub 2004 Jul 30.
9
Aging, muscle activity, and balance control: physiologic changes associated with balance impairment.
Gait Posture. 2003 Oct;18(2):101-8. doi: 10.1016/s0966-6362(02)00200-x.
10
Morphologic studies of motor units in normal human muscles.
Acta Anat (Basel). 1955;23(2):127-42. doi: 10.1159/000140989.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验