Suppr超能文献

SufI(FtsP)在大肠杆菌细胞分裂中的作用:其参与稳定分裂体组装的证据。

Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome.

作者信息

Samaluru Harish, SaiSree L, Reddy Manjula

机构信息

Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.

出版信息

J Bacteriol. 2007 Nov;189(22):8044-52. doi: 10.1128/JB.00773-07. Epub 2007 Aug 31.

Abstract

The function of SufI, a well-studied substrate of the TatABC translocase in Escherichia coli, is not known. It was earlier implicated in cell division, based on the finding that multiple copies of sufI suppressed the phenotypes of cells with mutations in ftsI (ftsI23), which encodes a divisomal transpeptidase. Recently, sufI was identified as both a multicopy suppressor gene and a synthetic lethal mutant of ftsEX, which codes for a division-specific putative ABC transporter. In this study, we show that sufI is essential for the viability of E. coli cells subjected to various forms of stress, including oxidative stress and DNA damage. The sufI mutant also exhibits sulA-independent filamentation, indicating a role in cell division. The phenotypes of the sufI mutant are suppressed by factors that stabilize FtsZ ring assembly, such as increased expression of cell division proteins FtsQAZ or FtsN or the presence of the gain-of-function ftsA* (FtsA R286W) mutation, suggesting that SufI is a divisomal protein required during stress conditions. In support of this, multicopy sufI suppressed the divisional defects of mutants carrying the ftsA12, ftsQ1, or ftsK44 allele but not those of mutants carrying ftsZ84. Most of the division-defective mutants, in particular those carrying a DeltaftsEX or ftsI23 allele, exhibited sensitivity to oxidative stress or DNA damage, and this sensitivity was also abolished by multiple copies of SufI. All of these data suggest that SufI is a division component involved in protecting or stabilizing the divisomal assembly under conditions of stress. Since sufI fulfils the requirements to be designated an fts gene, we propose that it be renamed ftsP.

摘要

SufI是大肠杆菌中TatABC转运体一个研究充分的底物,其功能尚不清楚。基于sufI多拷贝抑制ftsI(ftsI23)突变细胞表型这一发现,它早期被认为与细胞分裂有关,ftsI编码一种分裂体转肽酶。最近,sufI被鉴定为ftsEX的多拷贝抑制基因和合成致死突变体,ftsEX编码一种分裂特异性推定ABC转运体。在本研究中,我们表明sufI对于遭受各种形式应激(包括氧化应激和DNA损伤)的大肠杆菌细胞的活力至关重要。sufI突变体还表现出不依赖sulA的丝状体形成,表明其在细胞分裂中起作用。sufI突变体的表型被稳定FtsZ环组装的因子所抑制,如细胞分裂蛋白FtsQAZ或FtsN的表达增加或功能获得性ftsA*(FtsA R286W)突变的存在,这表明SufI是应激条件下所需的一种分裂体蛋白。支持这一点的是,sufI多拷贝抑制携带ftsA12、ftsQ1或ftsK44等位基因的突变体的分裂缺陷,但不抑制携带ftsZ84的突变体的分裂缺陷。大多数分裂缺陷突变体,特别是那些携带DeltaftsEX或ftsI23等位基因的突变体,对氧化应激或DNA损伤敏感,而SufI多拷贝也消除了这种敏感性。所有这些数据表明,SufI是一种在应激条件下参与保护或稳定分裂体组装的分裂成分。由于sufI满足被指定为fts基因的要求,我们建议将其重新命名为ftsP。

相似文献

3
FtsEX acts on FtsA to regulate divisome assembly and activity.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E5052-61. doi: 10.1073/pnas.1606656113. Epub 2016 Aug 8.
4
Evidence for functional overlap among multiple bacterial cell division proteins: compensating for the loss of FtsK.
Mol Microbiol. 2005 Oct;58(2):596-612. doi: 10.1111/j.1365-2958.2005.04858.x.
5
An altered FtsA can compensate for the loss of essential cell division protein FtsN in Escherichia coli.
Mol Microbiol. 2007 Jun;64(5):1289-305. doi: 10.1111/j.1365-2958.2007.05738.x.
6
Role of two essential domains of Escherichia coli FtsA in localization and progression of the division ring.
Mol Microbiol. 2004 Sep;53(5):1359-71. doi: 10.1111/j.1365-2958.2004.04245.x.
7
Role of Escherichia coli FtsN protein in the assembly and stability of the cell division ring.
Mol Microbiol. 2010 May;76(3):760-71. doi: 10.1111/j.1365-2958.2010.07134.x. Epub 2010 Mar 16.

引用本文的文献

1
Identification of SanA as a novel regulator of peptidoglycan biogenesis in Escherichia coli.
PLoS Genet. 2025 May 22;21(5):e1011712. doi: 10.1371/journal.pgen.1011712. eCollection 2025 May.
2
Throwing a spotlight on genomic dark matter: The power and potential of transposon-insertion sequencing.
J Biol Chem. 2025 May 14;301(6):110231. doi: 10.1016/j.jbc.2025.110231.
7
Envelope Stress Activates Expression of the Twin Arginine Translocation (Tat) System in Salmonella.
Microbiol Spectr. 2022 Oct 26;10(5):e0162122. doi: 10.1128/spectrum.01621-22. Epub 2022 Aug 29.
8
Knowledge integration and decision support for accelerated discovery of antibiotic resistance genes.
Nat Commun. 2022 Apr 29;13(1):2360. doi: 10.1038/s41467-022-29993-z.
10
Bacterial Cell Wall Quality Control during Environmental Stress.
mBio. 2020 Oct 13;11(5):e02456-20. doi: 10.1128/mBio.02456-20.

本文引用的文献

1
Filamentous morphology in GroE-depleted Escherichia coli induced by impaired folding of FtsE.
J Bacteriol. 2007 Aug;189(16):5860-6. doi: 10.1128/JB.00493-07. Epub 2007 Jun 8.
2
An altered FtsA can compensate for the loss of essential cell division protein FtsN in Escherichia coli.
Mol Microbiol. 2007 Jun;64(5):1289-305. doi: 10.1111/j.1365-2958.2007.05738.x.
3
The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring.
Microbiology (Reading). 2007 Mar;153(Pt 3):814-825. doi: 10.1099/mic.0.2006/001834-0.
6
Detection and quantification of superoxide formed within the periplasm of Escherichia coli.
J Bacteriol. 2006 Sep;188(17):6326-34. doi: 10.1128/JB.00554-06.
7
The order of the ring: assembly of Escherichia coli cell division components.
Mol Microbiol. 2006 Jul;61(1):5-8. doi: 10.1111/j.1365-2958.2006.05233.x.
8
The bacterial twin-arginine translocation pathway.
Annu Rev Microbiol. 2006;60:373-95. doi: 10.1146/annurev.micro.60.080805.142212.
9
Evidence for functional overlap among multiple bacterial cell division proteins: compensating for the loss of FtsK.
Mol Microbiol. 2005 Oct;58(2):596-612. doi: 10.1111/j.1365-2958.2005.04858.x.
10
Diverse paths to midcell: assembly of the bacterial cell division machinery.
Curr Biol. 2005 Jul 12;15(13):R514-26. doi: 10.1016/j.cub.2005.06.038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验