Brace L H, Theis R F, Niemann H B, Mayr H G, Hoegy W R, Nagy A F
Science. 1979 Jul 6;205(4401):102-5. doi: 10.1126/science.205.4401.102.
Empirical models of the electron temperature and electron density of the late afternoon and nightside Venus ionosphere have been derived from Pioneer Venus measurements acquired between 10 December 1978 and 23 March 1979. The models describe the average ionosphere conditions near 18 degrees N latitude between 150 and 700 kilometers altitude for solar zenith angles of 80 degrees to 180 degrees . The average index of solar flux was 200. A major feature of the density model is the factor of 10 decrease beyond 90 degrees followed by a very gradual decrease between 120 degrees and 180 degrees . The density at 150 degrees is about five times greater than observed by Venera 9 and 10 at solar minimum (solar flux approximately 80), a difference that is probably related to the effects of increased solar activity on the processes that maintain the nightside ionosphere. The nightside electron density profile from the model (above 150 kilometers) can be reproduced theoretically either by transport of 0(+) ions from the dayside or by precipitation of low-energy electrons. The ion transport process would require a horizontal flow velocity of about 300 meters per second, a value that is consistent with other Pioneer Venus observations. Although currently available energetic electron data do not yet permit the role of precipitation to be evaluated quantitatively, this process is clearly involved to some extent in the formation of the nightside ionosphere. Perhaps the most surprising feature of the temperature model is that the electron temperature remains high throughout the nightside ionosphere. These high nocturnal temperatures and the existence of a well-defined nightside ionopause suggest that energetic processes occur across the top of the entire nightside ionosphere, maintaining elevated temperatures. A heat flux of 2 x 10(10) electron volts per square centimeter per second, introduced at the ionopause, is consistent with the average electron temperature profile on the nightside at a solar zenith angle of 140 degrees .
基于1978年12月10日至1979年3月23日“先驱者-金星”号的测量数据,推导得出了金星电离层午后晚期和夜侧电子温度及电子密度的经验模型。这些模型描述了在太阳天顶角为80度至180度时,北纬18度附近、海拔150至700公里处的平均电离层状况。太阳通量的平均指数为200。密度模型的一个主要特征是,超过90度后密度下降了一个数量级,随后在120度至180度之间非常缓慢地下降。在太阳活动极小期(太阳通量约为80)时,150度处的密度比“金星9号”和“金星10号”观测到的密度大约大五倍,这种差异可能与太阳活动增强对维持夜侧电离层过程的影响有关。该模型的夜侧电子密度剖面(海拔150公里以上)理论上可以通过白天的O(+)离子传输或低能电子沉降来再现。离子传输过程需要约300米每秒的水平流速,这一数值与“先驱者-金星”号的其他观测结果一致。虽然目前可用的高能电子数据还无法对沉降的作用进行定量评估,但这一过程显然在某种程度上参与了夜侧电离层的形成。温度模型最令人惊讶的特征可能是,整个夜侧电离层的电子温度都保持在较高水平。这些夜间的高温以及明确的夜侧电离层顶的存在表明,在整个夜侧电离层顶部都发生了高能过程,从而维持了较高的温度。在电离层顶引入每秒每平方厘米2×10(10)电子伏特的热通量,与太阳天顶角为140度时夜侧的平均电子温度剖面一致。