Suppr超能文献

不同的静电势将ETGE和DLG基序定义为氧化应激反应中的铰链和锁扣。

Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response.

作者信息

Tong Kit I, Padmanabhan Balasundaram, Kobayashi Akira, Shang Chengwei, Hirotsu Yosuke, Yokoyama Shigeyuki, Yamamoto Masayuki

机构信息

Graduate School of Comprehensive Human Sciences, Center for TARA, JST-ERATO Environmental Response Project, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan.

出版信息

Mol Cell Biol. 2007 Nov;27(21):7511-21. doi: 10.1128/MCB.00753-07. Epub 2007 Sep 4.

Abstract

Nrf2 is the regulator of the oxidative/electrophilic stress response. Its turnover is maintained by Keap1-mediated proteasomal degradation via a two-site substrate recognition mechanism in which two Nrf2-Keap1 binding sites form a hinge and latch. The E3 ligase adaptor Keap1 recognizes Nrf2 through its conserved ETGE and DLG motifs. In this study, we examined how the ETGE and DLG motifs bind to Keap1 in a very similar fashion but with different binding affinities by comparing the crystal complex of a Keap1-DC domain-DLG peptide with that of a Keap1-DC domain-ETGE peptide. We found that these two motifs interact with the same basic surface of either Keap1-DC domain of the Keap1 homodimer. The DLG motif works to correctly position the lysines within the Nrf2 Neh2 domain for efficient ubiquitination. Together with the results from calorimetric and functional studies, we conclude that different electrostatic potentials primarily define the ETGE and DLG motifs as a hinge and latch that senses the oxidative/electrophilic stress.

摘要

Nrf2是氧化/亲电应激反应的调节因子。其周转通过Keap1介导的蛋白酶体降解来维持,该降解通过双位点底物识别机制进行,其中两个Nrf2-Keap1结合位点形成一个铰链和锁扣。E3连接酶衔接蛋白Keap1通过其保守的ETGE和DLG基序识别Nrf2。在本研究中,我们通过比较Keap1-DC结构域-DLG肽与Keap1-DC结构域-ETGE肽的晶体复合物,研究了ETGE和DLG基序如何以非常相似的方式但具有不同的结合亲和力与Keap1结合。我们发现这两个基序与Keap1同二聚体的任一Keap1-DC结构域的相同碱性表面相互作用。DLG基序的作用是将Nrf2 Neh2结构域内的赖氨酸正确定位,以实现高效泛素化。结合量热法和功能研究的结果,我们得出结论,不同的静电势主要将ETGE和DLG基序定义为感知氧化/亲电应激的铰链和锁扣。

相似文献

1
Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response.
Mol Cell Biol. 2007 Nov;27(21):7511-21. doi: 10.1128/MCB.00753-07. Epub 2007 Sep 4.
4
Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1.
Mol Cell Biol. 2014 Mar;34(5):832-46. doi: 10.1128/MCB.01191-13. Epub 2013 Dec 23.
5
Structural insights into the similar modes of Nrf2 transcription factor recognition by the cytoplasmic repressor Keap1.
J Synchrotron Radiat. 2008 May;15(Pt 3):273-6. doi: 10.1107/S090904950705114X. Epub 2008 Apr 18.
7
Structural analysis of the complex of Keap1 with a prothymosin alpha peptide.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Apr 1;64(Pt 4):233-8. doi: 10.1107/S1744309108004995. Epub 2008 Mar 21.
8
Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy.
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13568-73. doi: 10.1073/pnas.0806268105. Epub 2008 Aug 29.
9
Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2842-7. doi: 10.1073/pnas.0914036107. Epub 2010 Jan 27.
10
Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer.
Mol Cell. 2006 Mar 3;21(5):689-700. doi: 10.1016/j.molcel.2006.01.013.

引用本文的文献

1
Advances in KEAP1-based PROTACs as emerging therapeutic modalities: Structural basis and progress.
Redox Biol. 2025 Jul 21;85:103781. doi: 10.1016/j.redox.2025.103781.
4
Crosstalk between ferroptosis and innate immune in diabetic kidney disease: mechanisms and therapeutic implications.
Front Immunol. 2025 Feb 28;16:1505794. doi: 10.3389/fimmu.2025.1505794. eCollection 2025.
5
Computational modelling identifies primary mediators of crosstalk between DNA damage and oxidative stress responses.
PLoS Comput Biol. 2025 Mar 10;21(3):e1012844. doi: 10.1371/journal.pcbi.1012844. eCollection 2025 Mar.
6
Thirty years of NRF2: advances and therapeutic challenges.
Nat Rev Drug Discov. 2025 Mar 4. doi: 10.1038/s41573-025-01145-0.
7
Peptide design to control protein-protein interactions.
Chem Soc Rev. 2025 Feb 17;54(4):1684-1698. doi: 10.1039/d4cs00243a.
8
Flavonoids from as neuroprotective agents attenuate cerebral ischemia/reperfusion injury and via activating Nrf2.
Redox Rep. 2025 Dec;30(1):2440204. doi: 10.1080/13510002.2024.2440204. Epub 2024 Dec 19.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Subcellular localization and cytoplasmic complex status of endogenous Keap1.
Genes Cells. 2007 Oct;12(10):1163-78. doi: 10.1111/j.1365-2443.2007.01118.x.
3
Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism.
Biol Chem. 2006 Oct-Nov;387(10-11):1311-20. doi: 10.1515/BC.2006.164.
4
Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling.
EMBO J. 2006 Aug 9;25(15):3605-17. doi: 10.1038/sj.emboj.7601243. Epub 2006 Aug 3.
8
Purification, crystallization and preliminary X-ray diffraction analysis of the Kelch-like motif region of mouse Keap1.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005 Jan 1;61(Pt 1):153-5. doi: 10.1107/S1744309104032506. Epub 2004 Dec 24.
9
Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer.
Mol Cell. 2006 Mar 3;21(5):689-700. doi: 10.1016/j.molcel.2006.01.013.
10
Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1.
Mol Cell Biol. 2006 Jan;26(1):221-9. doi: 10.1128/MCB.26.1.221-229.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验