Wu Zhaohua, Huang Norden E, Long Steven R, Peng Chung-Kang
Center for Ocean-Land-Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705, USA.
Proc Natl Acad Sci U S A. 2007 Sep 18;104(38):14889-94. doi: 10.1073/pnas.0701020104. Epub 2007 Sep 10.
Determining trend and implementing detrending operations are important steps in data analysis. Yet there is no precise definition of "trend" nor any logical algorithm for extracting it. As a result, various ad hoc extrinsic methods have been used to determine trend and to facilitate a detrending operation. In this article, a simple and logical definition of trend is given for any nonlinear and nonstationary time series as an intrinsically determined monotonic function within a certain temporal span (most often that of the data span), or a function in which there can be at most one extremum within that temporal span. Being intrinsic, the method to derive the trend has to be adaptive. This definition of trend also presumes the existence of a natural time scale. All these requirements suggest the Empirical Mode Decomposition (EMD) method as the logical choice of algorithm for extracting various trends from a data set. Once the trend is determined, the corresponding detrending operation can be implemented. With this definition of trend, the variability of the data on various time scales also can be derived naturally. Climate data are used to illustrate the determination of the intrinsic trend and natural variability.
确定趋势并进行去趋势化操作是数据分析中的重要步骤。然而,“趋势”并没有精确的定义,也没有提取趋势的逻辑算法。因此,人们使用了各种特殊的外部方法来确定趋势并进行去趋势化操作。在本文中,针对任何非线性和非平稳时间序列,给出了一个简单且合乎逻辑的趋势定义,即它是在特定时间跨度(通常是数据跨度)内本质上确定的单调函数,或者是在该时间跨度内最多只有一个极值的函数。由于是本质上的,推导趋势的方法必须是自适应的。这个趋势定义还假定存在一个自然时间尺度。所有这些要求表明,经验模态分解(EMD)方法是从数据集中提取各种趋势的合乎逻辑的算法选择。一旦确定了趋势,就可以实施相应的去趋势化操作。基于这个趋势定义,还可以自然地得出数据在各种时间尺度上的变异性。气候数据被用来阐明内在趋势和自然变异性的确定。