Suppr超能文献

利用化学遗传学解析组织再生途径。

Unraveling tissue regeneration pathways using chemical genetics.

作者信息

Mathew Lijoy K, Sengupta Sumitra, Kawakami Atsushi, Andreasen Eric A, Löhr Christiane V, Loynes Catherine A, Renshaw Stephen A, Peterson Randall T, Tanguay Robert L

机构信息

Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA.

出版信息

J Biol Chem. 2007 Nov 30;282(48):35202-10. doi: 10.1074/jbc.M706640200. Epub 2007 Sep 11.

Abstract

Identifying the molecular pathways that are required for regeneration remains one of the great challenges of regenerative medicine. Although genetic mutations have been useful for identifying some molecular pathways, small molecule probes of regenerative pathways might offer some advantages, including the ability to disrupt pathway function with precise temporal control. However, a vertebrate regeneration model amenable to rapid throughput small molecule screening is not currently available. We report here the development of a zebrafish early life stage fin regeneration model and its use in screening for small molecules that modulate tissue regeneration. By screening 2000 biologically active small molecules, we identified 17 that specifically inhibited regeneration. These compounds include a cluster of glucocorticoids, and we demonstrate that transient activation of the glucocorticoid receptor is sufficient to block regeneration, but only if activation occurs during wound healing/blastema formation. In addition, knockdown of the glucocorticoid receptor restores regenerative capability to nonregenerative, glucocorticoid-exposed zebrafish. To test whether the classical anti-inflammatory action of glucocorticoids is responsible for blocking regeneration, we prevented acute inflammation following amputation by antisense repression of the Pu.1 gene. Although loss of Pu.1 prevents the inflammatory response, regeneration is not affected. Collectively, these results indicate that signaling from exogenous glucocorticoids impairs blastema formation and limits regenerative capacity through an acute inflammation-independent mechanism. These studies also demonstrate the feasibility of exploiting chemical genetics to define the pathways that govern vertebrate regeneration.

摘要

确定再生所需的分子途径仍然是再生医学面临的重大挑战之一。尽管基因突变有助于识别一些分子途径,但再生途径的小分子探针可能具有一些优势,包括能够在精确的时间控制下破坏途径功能。然而,目前尚无适用于高通量小分子筛选的脊椎动物再生模型。我们在此报告斑马鱼早期生命阶段鳍再生模型的开发及其在筛选调节组织再生的小分子中的应用。通过筛选2000种生物活性小分子,我们鉴定出17种特异性抑制再生的分子。这些化合物包括一组糖皮质激素,并且我们证明糖皮质激素受体的瞬时激活足以阻断再生,但前提是激活发生在伤口愈合/芽基形成期间。此外,敲低糖皮质激素受体可恢复非再生的、暴露于糖皮质激素的斑马鱼的再生能力。为了测试糖皮质激素的经典抗炎作用是否是阻断再生的原因,我们通过反义抑制Pu.1基因来预防截肢后的急性炎症。尽管Pu.1的缺失可防止炎症反应,但再生不受影响。总体而言,这些结果表明外源性糖皮质激素的信号传导通过独立于急性炎症的机制损害芽基形成并限制再生能力。这些研究还证明了利用化学遗传学来定义控制脊椎动物再生途径的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验