Schweikardt Thorsten, Olivares Concepción, Solano Francisco, Jaenicke Elmar, García-Borrón José Carlos, Decker Heinz
Institute of Molecular Biophysics, University of Mainz, Mainz, Germany.
Pigment Cell Res. 2007 Oct;20(5):394-401. doi: 10.1111/j.1600-0749.2007.00405.x.
Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxygens of M374 and V377 serving as hydrogen acceptors for the NH-groups of the imidazole rings of the copper-binding His367 and His180. Therefore, this loop is essential for the stability of the active site architecture. A double substitution (374)MS(375) --> (374)GG(375) or a single M374G mutation lead to a local perturbation of the protein matrix at the active site affecting the orientation of the H367 side chain, that may be unable to bind CuB reliably, resulting in loss of activity. The model also accounts for loss of function in two naturally occurring albino mutations, S380P and V393F. The hydroxyl group in S380 contributes to the correct orientation of M374, and the substitution of V393 for a bulkier phenylalanine sterically impedes correct side chain packing at the active site. Therefore, our model explains the mechanistic necessity for conservation of not only active site histidines but also adjacent amino acids in tyrosinase.
酪氨酸酶是黑色素合成过程中的首个且具有限速作用的酶,黑色素负责头发、皮肤和眼睛的着色。酪氨酸酶的突变通常会减少黑色素的生成,导致白化病,但在分子水平上其影响并不总是为人所理解。基于最近公布的非哺乳动物酪氨酸酶晶体结构对小鼠酪氨酸酶进行同源建模,提供了一个解释功能丧失突变的活性位点模型。根据该模型,与铜结合的组氨酸位于一个由四个紧密堆积的螺旋组成的螺旋束中。一个包含M374、S375和V377残基的环连接着CuA和CuB中心,M374和V377的肽氧作为铜结合His367和His180咪唑环NH基团的氢受体。因此,这个环对于活性位点结构的稳定性至关重要。双取代(374)MS(375) --> (374)GG(375)或单个M374G突变会导致活性位点处蛋白质基质的局部扰动,影响H367侧链的取向,使其可能无法可靠地结合CuB,从而导致活性丧失。该模型还解释了两个天然发生的白化病突变S380P和V393F中的功能丧失情况。S380中的羟基有助于M374的正确取向,V393被更大的苯丙氨酸取代在空间上阻碍了活性位点处侧链的正确堆积。因此,我们的模型解释了不仅活性位点组氨酸而且酪氨酸酶中相邻氨基酸保守性的机制必要性。