Luo Hui, Scriven L E, Francis Lorraine F
Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN 55455, USA.
J Colloid Interface Sci. 2007 Dec 15;316(2):500-9. doi: 10.1016/j.jcis.2007.07.047. Epub 2007 Jul 27.
Cryogenic scanning electron microscopy (cryo-SEM) was used to investigate microstructure development of composite coatings prepared from dispersions of antimony-doped tin oxide (ATO) nanoparticles (approximately 30 nm) or indium tin oxide (ITO) nanoparticles (approximately 40 nm) and latex particles (polydisperse, D(v): approximately 300 nm). Cryo-SEM images of ATO/latex dispersions as-frozen show small clusters of ATO and individual latex particles homogeneously distribute in a frozen water matrix. In contrast, cryo-SEM images of ITO/latex dispersions as-frozen show ITO particles adsorb onto latex particle surfaces. Electrostatic repulsion between negatively charged ATO and negatively charged latex particles stabilizes the ATO/latex dispersion, whereas in ITO/latex dispersion, positively charged ITO particles are attracted onto surfaces of negatively charged latex particles. These results are consistent with calculations of interaction potentials from past research. Cryo-SEM images of frozen and fractured coatings reveal that both ceramic nanoparticles and latex become more concentrated as drying proceeds; larger latex particles consolidate with ceramic nanoparticles in the interstitial spaces. With more drying, compaction flattens the latex-latex particle contacts and shrinks the voids between them. Thus, ceramic nanoparticles are forced to pack closely in the interstitial spaces, forming an interconnected network. Finally, latex particles partially coalesce at their flattened contacts, thereby yielding a coherent coating. The research reveals how nanoparticles segregate and interconnect among latex particles during drying.
低温扫描电子显微镜(cryo-SEM)用于研究由锑掺杂氧化锡(ATO)纳米颗粒(约30纳米)或氧化铟锡(ITO)纳米颗粒(约40纳米)与乳胶颗粒(多分散,D(v):约300纳米)的分散体制备的复合涂层的微观结构发展。冷冻后的ATO/乳胶分散体的低温扫描电子显微镜图像显示,ATO的小簇和单个乳胶颗粒均匀分布在冷冻水基质中。相比之下,冷冻后的ITO/乳胶分散体的低温扫描电子显微镜图像显示ITO颗粒吸附在乳胶颗粒表面。带负电的ATO和带负电的乳胶颗粒之间的静电排斥使ATO/乳胶分散体稳定,而在ITO/乳胶分散体中,带正电的ITO颗粒被吸引到带负电的乳胶颗粒表面。这些结果与过去研究中相互作用势的计算结果一致。冷冻和断裂涂层的低温扫描电子显微镜图像显示,随着干燥过程的进行,陶瓷纳米颗粒和乳胶都变得更加浓缩;较大的乳胶颗粒与陶瓷纳米颗粒在间隙空间中合并。随着更多的干燥,压实使乳胶-乳胶颗粒接触变平并缩小它们之间的空隙。因此,陶瓷纳米颗粒被迫在间隙空间中紧密堆积,形成一个相互连接的网络。最后,乳胶颗粒在其变平的接触处部分聚结,从而形成一个连贯的涂层。该研究揭示了纳米颗粒在干燥过程中如何在乳胶颗粒之间分离和相互连接。