Zikovsky Janik, Dogel Stanislav A, Haider M Baseer, DiLabio Gino A, Wolkow Robert A
Department of Physics, University of Alberta, Edmonton, Alberta T6G 2G7, Canada.
J Phys Chem A. 2007 Dec 13;111(49):12257-9. doi: 10.1021/jp074389p. Epub 2007 Sep 15.
Future nanoscale integrated circuits will require the realization of interconnections using molecular-scale nanostructures; a practical fabrication scheme would need to be largely self-assembling and operate on a large number of like structures in parallel. The self-directed growth of organic molecules on hydrogen-terminated silicon(100) [H-Si(100)] offers a simple method of realizing one-dimensional molecular lines. In this work, we introduce the ability to change the growth direction and form more complex, contiguous shapes. Numerous styrene and trimethylene sulfide L shapes were grown on a H-Si(100)-3x1 surface in parallel with no intermediate surface lithography steps, and similar shapes were also grown using allyl mercaptan and benzaldehyde on H-Si(100)-2x1. Registered scanning tunneling microscopy (STM) images and high-resolution electron energy loss spectroscopy (HREELS) were used to investigate the growth process.
未来的纳米级集成电路将需要使用分子尺度的纳米结构来实现互连;一种实用的制造方案将需要在很大程度上实现自组装,并能在大量类似结构上并行操作。有机分子在氢终止的硅(100)[H-Si(100)] 上的自定向生长提供了一种实现一维分子线的简单方法。在这项工作中,我们展示了改变生长方向并形成更复杂、连续形状的能力。大量的苯乙烯和三甲硫醚L形结构在H-Si(100)-3x1表面上并行生长,无需中间表面光刻步骤,并且使用烯丙基硫醇和苯甲醛在H-Si(100)-2x1上也生长出了类似的形状。通过配准扫描隧道显微镜(STM)图像和高分辨率电子能量损失谱(HREELS)来研究生长过程。