Ulintz Peter J, Bodenmiller Bernd, Andrews Philip C, Aebersold Ruedi, Nesvizhskii Alexey I
Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48103, USA.
Mol Cell Proteomics. 2008 Jan;7(1):71-87. doi: 10.1074/mcp.M700128-MCP200. Epub 2007 Sep 13.
Improvements in ion trap instrumentation have made n-dimensional mass spectrometry more practical. The overall goal of the study was to describe a model for making use of MS(2) and MS(3) information in mass spectrometry experiments. We present a statistical model for adjusting peptide identification probabilities based on the combined information obtained by coupling peptide assignments of consecutive MS(2) and MS(3) spectra. Using two data sets, a mixture of known proteins and a complex phosphopeptide-enriched sample, we demonstrate an increase in discriminating power of the adjusted probabilities compared with models using MS(2) or MS(3) data only. This work also addresses the overall value of generating MS(3) data as compared with an MS(2)-only approach with a focus on the analysis of phosphopeptide data.
离子阱仪器的改进使n维质谱分析变得更加实用。该研究的总体目标是描述一种在质谱实验中利用MS(2)和MS(3)信息的模型。我们提出了一种统计模型,用于根据连续MS(2)和MS(3)谱的肽段归属所获得的组合信息来调整肽段鉴定概率。使用两个数据集,一个是已知蛋白质的混合物,另一个是复杂的富含磷酸肽的样品,我们证明与仅使用MS(2)或MS(3)数据的模型相比,调整后的概率的鉴别力有所提高。这项工作还探讨了与仅采用MS(2)方法相比生成MS(3)数据的总体价值,重点是磷酸肽数据的分析。