Pressel D M, Misler S
Department of Medicine (Jewish Hospital), Washington University Medical Center, St. Louis, Missouri 63110.
J Membr Biol. 1991 Dec;124(3):239-53. doi: 10.1007/BF01994357.
Glucose-induced electrical activity in canine pancreatic islet B cells is distinct from that in rodent islets, though both display Ca(2+)-dependent insulin secretion. Rodent islet B cells undergo regular bursts of Ca(2+)-dependent action potentials, while canine islet B cells generate isolated Na(+)-dependent action potentials which often give way to a plateau depolarization. Here we present evidence to reconcile the species difference in electrical activity with the similarity of Ca2+ dependence of secretion. (i) In canine B cells increasing glucose concentrations produce membrane depolarization and increasing frequency of Nao-dependent action potentials until a background membrane potential (approximately -40 mV) is reached where Na+ currents are inactivated. (ii) Voltage-dependent Ca2+ currents are present which are activated over the voltage excursion of the action potential (-50 to +20 mV) and inactivate slowly, (over seconds) in the range of the plateau depolarization (-40 to -25 mV). Hence, they are available to contribute to both phases of depolarization. (iii) Tetrodotoxin (TTX) reduces by half an early transient phase of glucose-stimulated insulin secretion but not a subsequent prolonged plateau phase. The transient phase of secretion often corresponds well in time to the period of initial high frequency action potential activity. These latter results suggest that in canine B cells voltage-dependent Na+ and Ca2+ currents mediate biphasic glucose-induced insulin secretion. The early train of Na(+)-dependent action potentials, by transiently activating Ca2+ channels and allowing pulsatile Ca2+ entry, may promote an early transient phase of insulin secretion. The subsequent sustained plateau depolarization, by allowing sustained Ca2+ entry, may permit steady insulin release.
尽管犬类胰岛B细胞和啮齿动物胰岛在葡萄糖诱导的电活动方面都表现出Ca(2+)依赖性胰岛素分泌,但两者是不同的。啮齿动物胰岛B细胞会经历规律性的Ca(2+)依赖性动作电位爆发,而犬类胰岛B细胞则产生孤立的Na(+)依赖性动作电位,且这些电位常常会转变为平台期去极化。在此,我们提供证据以调和电活动方面的物种差异与分泌的Ca2+依赖性的相似性。(i) 在犬类B细胞中,葡萄糖浓度升高会导致膜去极化以及Na+依赖性动作电位频率增加,直至达到背景膜电位(约 -40 mV),此时Na+电流失活。(ii) 存在电压依赖性Ca2+电流,其在动作电位的电压变化范围(-50至 +20 mV)内被激活,并在平台期去极化范围(-40至 -25 mV)内缓慢失活(数秒内)。因此,它们可对去极化的两个阶段都有贡献。(iii) 河豚毒素(TTX)可将葡萄糖刺激的胰岛素分泌的早期短暂阶段减少一半,但不会影响随后的延长的平台期阶段。分泌的短暂阶段在时间上通常与初始高频动作电位活动期很好地对应。这些结果表明,在犬类B细胞中,电压依赖性Na+和Ca2+电流介导双相葡萄糖诱导的胰岛素分泌。早期的Na(+)依赖性动作电位序列通过短暂激活Ca2+通道并允许脉动性Ca2+内流,可能促进胰岛素分泌的早期短暂阶段。随后持续的平台期去极化通过允许持续的Ca2+内流,可能使胰岛素稳定释放。