Suppr超能文献

使用pyDock对接姿势的预测与评分。

Prediction and scoring of docking poses with pyDock.

作者信息

Grosdidier Solène, Pons Carles, Solernou Albert, Fernández-Recio Juan

机构信息

Life Sciences Department, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain.

出版信息

Proteins. 2007 Dec 1;69(4):852-8. doi: 10.1002/prot.21796.

Abstract

The two previous CAPRI experiments showed the success of our rigid-body and refinement approach. For this third edition of CAPRI, we have used a new faster protocol called pyDock, which uses electrostatics and desolvation energy to score docking poses generated with FFT-based algorithms. In target T24 (unbound/model), our best prediction had the highest value of fraction of native contacts (40%) among all participants, although it was not considered as acceptable by the CAPRI criteria. In target T25 (unbound/bound), we submitted a model with medium quality. In target T26 (unbound/unbound), we did not submit any acceptable model (but we would have submitted acceptable predictions if we had included available mutational information about the binding site). For targets T27 (unbound/unbound) and T28 (homo-dimer using model), nobody (including us) submitted any acceptable model. Intriguingly, the crystal structure of target T27 shows an alternative interface that correlates with available biological data (we would have submitted acceptable predictions if we had included this). We also participated in all targets of the SCORERS experiment, with at least acceptable accuracy in all valid cases. We submitted two medium and four acceptable scoring models of T25. Using additional distance restraints (from mutational data), we had two medium and two acceptable scoring models of T26. For target T27, we submitted two acceptable scoring models of the alternative interface in the crystal structure. In summary, CAPRI showed the excellent capabilities of pyDock in identifying near-native docking poses.

摘要

之前的两项CAPRI实验证明了我们刚体和优化方法的成功。在CAPRI的第三版实验中,我们使用了一种名为pyDock的更快的新协议,该协议利用静电和去溶剂化能量对基于快速傅里叶变换(FFT)算法生成的对接构象进行评分。在T24靶点(未结合/模型)中,我们的最佳预测在所有参与者中具有最高的天然接触分数值(40%),尽管根据CAPRI标准它不被认为是可接受的。在T25靶点(未结合/结合)中,我们提交了一个中等质量的模型。在T26靶点(未结合/未结合)中,我们没有提交任何可接受的模型(但如果我们纳入了关于结合位点的可用突变信息,我们会提交可接受的预测)。对于T27靶点(未结合/未结合)和T28靶点(使用模型的同二聚体),没有人(包括我们)提交任何可接受的模型。有趣的是,T27靶点的晶体结构显示了一个与可用生物学数据相关的替代界面(如果我们纳入了这一信息,我们会提交可接受的预测)。我们还参与了评分者实验的所有靶点,在所有有效案例中至少具有可接受的准确性。我们提交了两个中等质量和四个可接受的T25评分模型。使用额外的距离限制(来自突变数据),我们有两个中等质量和两个可接受的T26评分模型。对于T27靶点,我们提交了晶体结构中替代界面的两个可接受的评分模型。总之,CAPRI展示了pyDock在识别接近天然对接构象方面的卓越能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验