Suppr超能文献

通过可控微流控技术实现剪切力诱导的细胞内分子加载

Shear-induced intracellular loading of cells with molecules by controlled microfluidics.

作者信息

Hallow Daniel M, Seeger Richard A, Kamaev Pavel P, Prado Gustavo R, LaPlaca Michelle C, Prausnitz Mark R

机构信息

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, USA.

出版信息

Biotechnol Bioeng. 2008 Mar 1;99(4):846-54. doi: 10.1002/bit.21651.

Abstract

This study tested the hypothesis that controlled flow through microchannels can cause shear-induced intracellular loading of cells with molecules. The overall goal was to design a simple device to expose cells to fluid shear stress and thereby increase plasma membrane permeability. DU145 prostate cancer cells were exposed to fluid shear stress in the presence of fluorescent cell-impermeant molecules by using a cone-and-plate shearing device or high-velocity flow through microchannels. Using a syringe pump, cell suspensions were flowed through microchannels of 50-300 microm diameter drilled through Mylar sheets using an excimer laser. As quantified by flow cytometry, intracellular uptake and loss of viability correlated with the average shear stress. Optimal results were observed when exposing the cells to high shear stress for short durations in conical channels, which yielded uptake to over one-third of cells while maintaining viability at approximately 80%. This method was capable of loading cells with molecules including calcein (0.62 kDa), large molecule weight dextrans (150-2,000 kDa), and bovine serum albumin (66 kDa). These results supported the hypothesis that shear-induced intracellular uptake could be generated by flow of cell suspensions through microchannels and further led to the design of a simple, inexpensive, and effective device to deliver molecules into cells. Such a device could benefit biological research and the biotechnology industry.

摘要

本研究检验了以下假设

通过微通道的可控流动可导致分子因剪切力而进入细胞内。总体目标是设计一种简单装置,使细胞暴露于流体剪切应力下,从而增加质膜通透性。通过使用锥板剪切装置或让细胞悬液高速流经微通道,使DU145前列腺癌细胞在存在荧光性细胞非渗透性分子的情况下暴露于流体剪切应力。使用注射泵,细胞悬液流经用准分子激光在聚酯薄膜片上钻出的直径为50 - 300微米的微通道。通过流式细胞术定量分析,细胞内摄取和活力丧失与平均剪切应力相关。当在锥形通道中将细胞短时间暴露于高剪切应力时观察到最佳结果,此时超过三分之一的细胞发生摄取,同时活力维持在约80%。该方法能够使细胞加载包括钙黄绿素(0.62 kDa)、大分子重量葡聚糖(150 - 2000 kDa)和牛血清白蛋白(66 kDa)在内的分子。这些结果支持了以下假设:细胞悬液流经微通道可产生剪切力诱导的细胞内摄取,进而促成了一种简单、廉价且有效的将分子递送至细胞内的装置的设计。这样一种装置可能会使生物学研究和生物技术产业受益。

相似文献

1
Shear-induced intracellular loading of cells with molecules by controlled microfluidics.
Biotechnol Bioeng. 2008 Mar 1;99(4):846-54. doi: 10.1002/bit.21651.
2
Continuous flow in open microfluidics using controlled evaporation.
Lab Chip. 2005 Dec;5(12):1355-9. doi: 10.1039/b510044e. Epub 2005 Oct 26.
3
Long range microfluidic shear device for cellular mechanotransduction studies.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:3209-12. doi: 10.1109/EMBC.2015.7319075.
4
Microfluidic relief for transport limitations.
Biotechniques. 2005 Aug;39(2):159, 161, 163. doi: 10.2144/05392TE01.
5
Electroosmotic mixing in microchannels.
Lab Chip. 2004 Dec;4(6):558-62. doi: 10.1039/b408875a. Epub 2004 Nov 4.
7
A system for micro/nano fluidic flow diagnostics.
Biomed Microdevices. 2005 Sep;7(3):169-77. doi: 10.1007/s10544-005-3022-9.
8
9
Novel in vitro microfluidic platform for osteocyte mechanotransduction studies.
Integr Biol (Camb). 2020 Dec 30;12(12):303-310. doi: 10.1093/intbio/zyaa025.
10
Rapid mixing using two-phase hydraulic focusing in microchannels.
Biomed Microdevices. 2005 Mar;7(1):13-20. doi: 10.1007/s10544-005-6167-7.

引用本文的文献

1
Microfluidic Platforms for Ex Vivo and In Vivo Gene Therapy.
Biosensors (Basel). 2025 Aug 4;15(8):504. doi: 10.3390/bios15080504.
3
Enhancing Chimeric Antigen Receptor T-Cell Generation via Microfluidic Mechanoporation and Lipid Nanoparticles.
Small. 2025 Apr;21(17):e2410975. doi: 10.1002/smll.202410975. Epub 2025 Mar 19.
6
Mechanically mediated cargo delivery to cells using microfluidic devices.
Biomicrofluidics. 2024 Dec 6;18(6):061302. doi: 10.1063/5.0240667. eCollection 2024 Dec.
7
High throughput intracellular delivery by viscoelastic mechanoporation.
Nat Commun. 2024 Jan 2;15(1):115. doi: 10.1038/s41467-023-44447-w.
8
Effect of the shear rate and residence time on the lysis of AC16 human cardiomyocyte cells via surface acoustic waves.
Biomicrofluidics. 2023 Dec 6;17(6):064104. doi: 10.1063/5.0158977. eCollection 2023 Dec.
10
MegaPro, a clinically translatable nanoparticle for tracking of stem cell implants in pig cartilage defects.
Theranostics. 2023 Apr 29;13(8):2710-2720. doi: 10.7150/thno.82620. eCollection 2023.

本文引用的文献

1
Mechanism of intracellular delivery by acoustic cavitation.
Ultrasound Med Biol. 2006 Jun;32(6):915-24. doi: 10.1016/j.ultrasmedbio.2006.02.1416.
2
Mechanical cell injury.
Ann N Y Acad Sci. 2005 Dec;1066:67-84. doi: 10.1196/annals.1363.006.
3
Viral gene therapy strategies: from basic science to clinical application.
J Pathol. 2006 Jan;208(2):299-318. doi: 10.1002/path.1896.
4
Mechanical trauma induces immediate changes in neuronal network activity.
J Neural Eng. 2005 Dec;2(4):148-58. doi: 10.1088/1741-2560/2/4/011. Epub 2005 Nov 29.
5
Current developments in gene transfection agents.
Curr Drug Deliv. 2004 Apr;1(2):165-93. doi: 10.2174/1567201043479902.
6
Cationic liposomes for gene delivery.
Expert Opin Drug Deliv. 2005 Mar;2(2):237-54. doi: 10.1517/17425247.2.2.237.
8
Hollow metal microneedles for insulin delivery to diabetic rats.
IEEE Trans Biomed Eng. 2005 May;52(5):909-15. doi: 10.1109/TBME.2005.845240.
9
Healing sound: the use of ultrasound in drug delivery and other therapeutic applications.
Nat Rev Drug Discov. 2005 Mar;4(3):255-60. doi: 10.1038/nrd1662.
10
Electroporation gene therapy: new developments in vivo and in vitro.
Curr Gene Ther. 2004 Sep;4(3):309-16. doi: 10.2174/1566523043346336.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验