Suppr超能文献

使用液相色谱/串联质谱法鉴定人肝微粒体中卡马西平的主要和连续生物活化途径。

Identification of primary and sequential bioactivation pathways of carbamazepine in human liver microsomes using liquid chromatography/tandem mass spectrometry.

作者信息

Bu Hai-Zhi, Zhao Ping, Dalvie Deepak K, Pool William F

机构信息

Department of Pharmacokinetics, Dynamics & Metabolism, Pfizer Global Research and Development, San Diego, CA 92121, USA.

出版信息

Rapid Commun Mass Spectrom. 2007;21(20):3317-22. doi: 10.1002/rcm.3220.

Abstract

Carbamazepine (CBZ)-induced idiosyncratic toxicities are commonly believed to be related to the formation of reactive metabolites. CBZ is metabolized primarily into carbamazepine-10,11-epoxide (CBZE), 2-hydroxycarbamazepine (2-OHCBZ) and 3-hydroxycarbamazepine (3-OHCBZ), in human liver microsomes (HLM). Over the past two decades, the 2,3-arene oxidation has been commonly assumed to be the major bioactivation pathway of CBZ. Recently, CBZE has been also confirmed to be chemically reactive. In order to identify other possible primary and sequential CBZ bioactivation pathways, individual HLM incubations of CBZ, CBZE, 2-OHCBZ and 3-OHCBZ were conducted in the presence of glutathione (GSH). In the CBZ incubation, a variety of GSH adducts were formed via individual or combined pathways of 10,11-epoxidation, arene oxidation and iminoquinone formation. In the CBZE incubation, the only detected GSH adducts were CBZE-SG1 and CBZE-SG2, which represented the two most abundant conjugates observed in the CBZ incubation. In the incubation of either 2-OHCBZ or 3-OHCBZ, a number of sequential GSH adducts were observed. However, none of the 2-OHCBZ-derived GSH adducts were detected in the CBZ incubation. Meanwhile, several GSH adducts were only observed in the CBZ incubation. In conclusion, CBZ can be bioactivated in HLM via 10,11-epoxidation, 2,3-arene oxidation, and several other pathways. In addition, the sequential bioactivation of 3-OHCBZ appeared to play a more important role than that of either CBZE or 2-OHCBZ in the overall bioactivation of CBZ in HLM. The identification of several new bioactivation pathways of CBZ in HLM demonstrates that possible CBZ bioactivation can be more complex than previously thought.

摘要

卡马西平(CBZ)引起的特异质性毒性通常被认为与活性代谢物的形成有关。在人肝微粒体(HLM)中,CBZ主要代谢为卡马西平-10,11-环氧化物(CBZE)、2-羟基卡马西平(2-OHCBZ)和3-羟基卡马西平(3-OHCBZ)。在过去的二十年里,2,3-芳烃氧化一直被普遍认为是CBZ的主要生物活化途径。最近,CBZE也被证实具有化学反应性。为了确定其他可能的CBZ初级和连续生物活化途径,在谷胱甘肽(GSH)存在的情况下,对CBZ、CBZE、2-OHCBZ和3-OHCBZ进行了单独的HLM孵育。在CBZ孵育过程中,通过10,11-环氧化、芳烃氧化和亚氨基醌形成的单独或联合途径形成了多种GSH加合物。在CBZE孵育中,唯一检测到的GSH加合物是CBZE-SG1和CBZE-SG2,它们代表了在CBZ孵育中观察到的两种最丰富的共轭物。在2-OHCBZ或3-OHCBZ的孵育中,观察到了一些连续的GSH加合物。然而,在CBZ孵育中未检测到任何源自2-OHCBZ的GSH加合物。同时,一些GSH加合物仅在CBZ孵育中观察到。总之,CBZ可以通过10,11-环氧化、2,3-芳烃氧化和其他几种途径在HLM中被生物活化。此外,在HLM中CBZ的整体生物活化过程中,3-OHCBZ的连续生物活化似乎比CBZE或2-OHCBZ发挥了更重要的作用。在HLM中鉴定出CBZ的几种新的生物活化途径表明,CBZ可能的生物活化比以前认为的更为复杂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验