Salway Ruth, Wakefield Jon
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK.
Biometrics. 2008 Jun;64(2):620-6. doi: 10.1111/j.1541-0420.2007.00897.x. Epub 2007 Sep 20.
This article considers the modeling of single-dose pharmacokinetic data. Traditionally, so-called compartmental models have been used to analyze such data. Unfortunately, the mean function of such models are sums of exponentials for which inference and computation may not be straightforward. We present an alternative to these models based on generalized linear models, for which desirable statistical properties exist, with a logarithmic link and gamma distribution. The latter has a constant coefficient of variation, which is often appropriate for pharmacokinetic data. Inference is convenient from either a likelihood or a Bayesian perspective. We consider models for both single and multiple individuals, the latter via generalized linear mixed models. For single individuals, Bayesian computation may be carried out with recourse to simulation. We describe a rejection algorithm that, unlike Markov chain Monte Carlo, produces independent samples from the posterior and allows straightforward calculation of Bayes factors for model comparison. We also illustrate how prior distributions may be specified in terms of model-free pharmacokinetic parameters of interest. The methods are applied to data from 12 individuals following administration of the antiasthmatic agent theophylline.
本文考虑单剂量药代动力学数据的建模。传统上,所谓的房室模型已被用于分析此类数据。不幸的是,此类模型的均值函数是指数之和,其推断和计算可能并不直接。我们基于广义线性模型提出了这些模型的替代方案,广义线性模型具有理想的统计特性,采用对数链接和伽马分布。后者具有恒定的变异系数,这通常适用于药代动力学数据。从似然或贝叶斯的角度来看,推断都很方便。我们考虑单个人和多个人的模型,后者通过广义线性混合模型。对于单个人,可以借助模拟进行贝叶斯计算。我们描述了一种拒绝算法,与马尔可夫链蒙特卡罗方法不同,该算法从后验中产生独立样本,并允许直接计算用于模型比较的贝叶斯因子。我们还说明了如何根据感兴趣的无模型药代动力学参数指定先验分布。这些方法应用于12名个体服用抗哮喘药物茶碱后的数据。