Suppr超能文献

通过对流增强L-选择素而非P-选择素的键形成频率。

Enhancement of L-selectin, but not P-selectin, bond formation frequency by convective flow.

作者信息

Paschall Christopher D, Guilford William H, Lawrence Michael B

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA.

出版信息

Biophys J. 2008 Feb 1;94(3):1034-45. doi: 10.1529/biophysj.106.098707. Epub 2007 Sep 21.

Abstract

L-selectin-mediated leukocyte rolling has been proposed to require a high rate of bond formation compared to that of P-selectin to compensate for its much higher off-rate. To test this hypothesis, a microbead system was utilized to measure relative L-selectin and P-selectin bond formation rates on their common ligand P-selectin glycoprotein ligand-1 (PSGL-1) under shear flow. Using video microscopy, we tracked selectin-coated microbeads to detect the formation frequency of adhesive tether bonds. From velocity distributions of noninteracting and interacting microbeads, we observed that tether bond formation rates for P-selectin on PSGL-1 decreased with increasing wall shear stress, from 0.14 +/- 0.04 bonds/microm at 0.2 dyn/cm(2) to 0.014 +/- 0.003 bonds/microm at 1.0 dyn/cm(2). In contrast, L-selectin tether bond formation increased from 0.017 +/- 0.005 bonds/microm at 0.2 dyn/cm(2) to 0.031 +/- 0.005 bonds/microm at 1.0 dyn/cm(2). L-selectin tether bond formation rates appeared to be enhanced by convective transport, whereas P-selectin rates were inhibited. The transition force for the L-selectin catch-slip transition of 44 pN/bond agreed well with theoretical models (Pereverzev et al. 2005. Biophys. J. 89:1446-1454). Despite catch bond behavior, hydrodymanic shear thresholding was not detected with L-selectin beads rolling on PSGL-1. We speculate that shear flow generated compressive forces may enhance L-selectin bond formation relative to that of P-selectin and that L-selectin bonds with PSGL-1 may be tuned for the compressive forces characteristic of leukocyte-leukocyte collisions during secondary capture on the blood vessel wall. This is the first report, to our knowledge, comparing L-selectin and P-selectin bond formation frequencies in shear flow.

摘要

与P-选择素相比,L-选择素介导的白细胞滚动被认为需要更高的键形成速率,以补偿其更高的解离速率。为了验证这一假设,我们利用微珠系统在剪切流下测量L-选择素和P-选择素与其共同配体P-选择素糖蛋白配体-1(PSGL-1)的相对键形成速率。通过视频显微镜,我们追踪选择素包被的微珠以检测粘附系链键的形成频率。从非相互作用和相互作用微珠的速度分布中,我们观察到PSGL-1上P-选择素的系链键形成速率随壁面剪切应力的增加而降低,从0.2达因/平方厘米时的0.14±0.04个键/微米降至1.0达因/平方厘米时的0.014±0.003个键/微米。相比之下,L-选择素系链键的形成从0.2达因/平方厘米时的0.017±0.005个键/微米增加到1.0达因/平方厘米时的0.031±0.005个键/微米。L-选择素系链键的形成速率似乎因对流运输而增强,而P-选择素的速率则受到抑制。L-选择素捕获-滑移转变的转变力为44皮牛/键,与理论模型吻合良好(Pereverzev等人,2005年。《生物物理学杂志》89:1446 - 1454)。尽管存在捕获键行为,但在PSGL-1上滚动的L-选择素微珠未检测到流体动力学剪切阈值。我们推测,剪切流产生的压缩力可能相对于P-选择素增强L-选择素的键形成,并且L-选择素与PSGL-1的键可能针对血管壁二次捕获期间白细胞-白细胞碰撞的压缩力特性进行了调整。据我们所知,这是第一份比较剪切流下L-选择素和P-选择素键形成频率的报告。

相似文献

1
Enhancement of L-selectin, but not P-selectin, bond formation frequency by convective flow.
Biophys J. 2008 Feb 1;94(3):1034-45. doi: 10.1529/biophysj.106.098707. Epub 2007 Sep 21.
4
Catch bonds govern adhesion through L-selectin at threshold shear.
J Cell Biol. 2004 Sep 13;166(6):913-23. doi: 10.1083/jcb.200403144.
6
Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan.
J Biol Chem. 2004 Jan 16;279(3):2291-8. doi: 10.1074/jbc.M310396200. Epub 2003 Oct 22.
7
Dimerization of a selectin and its ligand stabilizes cell rolling and enhances tether strength in shear flow.
Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10166-71. doi: 10.1073/pnas.171248098. Epub 2001 Jul 31.
8
Neutrophil rolling at high shear: flattening, catch bond behavior, tethers and slings.
Mol Immunol. 2013 Aug;55(1):59-69. doi: 10.1016/j.molimm.2012.10.025. Epub 2012 Nov 9.

引用本文的文献

1
Binding of Soluble Ligands to Membrane Receptors: A Molecular Dynamics Simulation Study.
J Phys Chem B. 2025 Jul 24;129(29):7475-7482. doi: 10.1021/acs.jpcb.5c01197. Epub 2025 Jul 12.
2
Leukocyte rolling on engineered nanodot surfaces.
Micro Nano Lett. 2011 May;6(5):301-305. doi: 10.1049/mnl.2011.0184. Epub 2011 May 30.
3
Immunomodulation by endothelial cells - partnering up with the immune system?
Nat Rev Immunol. 2022 Sep;22(9):576-588. doi: 10.1038/s41577-022-00694-4. Epub 2022 Mar 14.
4
TCR-pMHC kinetics under force in a cell-free system show no intrinsic catch bond, but a minimal encounter duration before binding.
Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16943-16948. doi: 10.1073/pnas.1902141116. Epub 2019 Jul 17.
5
A High-Throughput Technique Reveals the Load- and Site Density-Dependent Kinetics of E-Selectin.
Cell Mol Bioeng. 2012 Dec;5(4):493-503. doi: 10.1007/s12195-012-0247-6.
6
Contractile fibers and catch-bond clusters: a biological force sensor?
Biophys J. 2013 Sep 17;105(6):1336-45. doi: 10.1016/j.bpj.2013.07.039.
7
Rupture of single receptor-ligand bonds: a new insight into probability distribution function.
Colloids Surf B Biointerfaces. 2013 Jan 1;101:501-9. doi: 10.1016/j.colsurfb.2012.07.020. Epub 2012 Jul 27.
8
Effect of loading conditions on the dissociation behaviour of catch bond clusters.
J R Soc Interface. 2012 May 7;9(70):928-37. doi: 10.1098/rsif.2011.0553. Epub 2011 Sep 21.
9
Multivalent binding of nanocarrier to endothelial cells under shear flow.
Biophys J. 2011 Jul 20;101(2):319-26. doi: 10.1016/j.bpj.2011.05.063.
10
Studying Molecular Interactions at the Single Bond Level with a Laminar Flow Chamber.
Cell Mol Bioeng. 2008 Dec;1(4):247-262. doi: 10.1007/s12195-008-0031-9.

本文引用的文献

2
Microparticle adhesive dynamics and rolling mediated by selectin-specific antibodies under flow.
Biotechnol Bioeng. 2007 Feb 15;96(3):596-607. doi: 10.1002/bit.21153.
4
Dynamic shifts in LFA-1 affinity regulate neutrophil rolling, arrest, and transmigration on inflamed endothelium.
Blood. 2006 Mar 1;107(5):2101-11. doi: 10.1182/blood-2005-06-2303. Epub 2005 Nov 3.
5
Measuring molecular elasticity by atomic force microscope cantilever fluctuations.
Biophys J. 2006 Jan 15;90(2):681-92. doi: 10.1529/biophysj.105.061010. Epub 2005 Oct 28.
6
The two-pathway model for the catch-slip transition in biological adhesion.
Biophys J. 2005 Sep;89(3):1446-54. doi: 10.1529/biophysj.105.062158. Epub 2005 Jun 10.
7
Catch bonds govern adhesion through L-selectin at threshold shear.
J Cell Biol. 2004 Sep 13;166(6):913-23. doi: 10.1083/jcb.200403144.
8
Neutrophil adhesive contact dependence on impingement force.
Biophys J. 2004 Dec;87(6):4237-45. doi: 10.1529/biophysj.103.031773. Epub 2004 Sep 10.
9
Dynamic alterations of membrane tethers stabilize leukocyte rolling on P-selectin.
Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13519-24. doi: 10.1073/pnas.0403608101. Epub 2004 Sep 7.
10
Quantifying the effects of molecular orientation and length on two-dimensional receptor-ligand binding kinetics.
J Biol Chem. 2004 Oct 22;279(43):44915-23. doi: 10.1074/jbc.M407039200. Epub 2004 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验