Azevedo John L, Tietz Emily, Two-Feathers Tashena, Paull Jeff, Chapman Kenneth
Exercise Biology Laboratory, Department of Kinesiology, California State University Chico, Chico, California, USA.
PLoS One. 2007 Sep 26;2(9):e927. doi: 10.1371/journal.pone.0000927.
Exogenous carbohydrate oxidation was assessed in 6 male Category 1 and 2 cyclists who consumed CytoMax (C) or a leading sports drink (G) before and during continuous exercise (CE). C contained lactate-polymer, fructose, glucose and glucose polymer, while G contained fructose and glucose. Peak power output and VO2 on a cycle ergometer were 408+/-13 W and 67.4+/-3.2 mlO2 x kg(-1) x min(-1). Subjects performed 3 bouts of CE with C, and 2 with G at 62% VO2peak for 90 min, followed by high intensity (HI) exercise (86% VO(2)peak) to volitional fatigue. Subjects consumed 250 ml fluid immediately before (-2 min) and every 15 min of cycling. Drinks at -2 and 45 min contained 100 mg of [U-(13)C]-lactate, -glucose or -fructose. Blood, pulmonary gas samples and 13CO2 excretion were taken prior to fluid ingestion and at 5,10,15,30,45,60,75, and 90 min of CE, at the end of HI, and 15 min of recovery. HI after CE was 25% longer with C than G (6.5+/-0.8 vs. 5.2+/-1.0 min, P<0.05). 13CO2 from the -2 min lactate tracer was significantly elevated above rest at 5 min of exercise, and peaked at 15 min. 13CO2 from the -2 min glucose tracer peaked at 45 min for C and G. 13CO2 increased rapidly from the 45 min lactate dose, and by 60 min of exercise was 33% greater than glucose in C or G, and 36% greater than fructose in G. 13CO2 production following tracer fructose ingestion was greater than glucose in the first 45 minutes in C and G. Cumulative recoveries of tracer during exercise were: 92%+/-5.3% for lactate in C and 25+/-4.0% for glucose in C or G. Recoveries for fructose in C and G were 75+/-5.9% and 26+/-6.6%, respectively. Lactate was used more rapidly and to a greater extent than fructose or glucose. CytoMax significantly enhanced HI.
在6名1级和2级男性自行车运动员中评估了外源性碳水化合物氧化情况,这些运动员在持续运动(CE)之前和期间饮用了赛托迈克斯(C)或一种领先的运动饮料(G)。C含有乳酸聚合物、果糖、葡萄糖和葡萄糖聚合物,而G含有果糖和葡萄糖。在自行车测力计上的峰值功率输出和摄氧量分别为408±13瓦和67.4±3.2毫升氧气×千克⁻¹×分钟⁻¹。受试者以62%的摄氧量峰值进行了3次C饮料的持续运动,2次G饮料的持续运动,每次持续90分钟,随后进行高强度(HI)运动(86%的摄氧量峰值)直至自觉疲劳。受试者在骑行前(-2分钟)和骑行过程中每15分钟饮用250毫升液体。-2分钟和45分钟时的饮料含有100毫克的[U-(¹³)C]-乳酸、-葡萄糖或-果糖。在摄入液体前以及持续运动的5、10、15、30、45、60、75和90分钟、高强度运动结束时以及恢复15分钟时采集血液、肺气体样本和¹³CO₂排泄量。饮用C饮料后进行高强度运动的时间比饮用G饮料后长25%(6.5±0.8分钟对5.2±1.0分钟,P<0.05)。运动5分钟时,-2分钟乳酸示踪剂产生的¹³CO₂显著高于静息水平,并在15分钟时达到峰值。饮用C饮料和G饮料时,-2分钟葡萄糖示踪剂产生的¹³CO₂在45分钟时达到峰值。从45分钟的乳酸剂量开始,¹³CO₂迅速增加,到运动60分钟时,饮用C饮料或G饮料时的¹³CO₂比葡萄糖高33%,比饮用G饮料时的果糖高36%。在C饮料和G饮料中,摄入示踪剂果糖后,前45分钟内¹³CO₂的产生量大于葡萄糖。运动期间示踪剂的累积回收率为:饮用C饮料时乳酸的回收率为92%±5.3%,饮用C饮料或G饮料时葡萄糖的回收率为25±4.0%。饮用C饮料和G饮料时果糖的回收率分别为75±5.9%和26±6.6%。乳酸的使用速度比果糖或葡萄糖更快,使用量也更大。赛托迈克斯显著增强了高强度运动能力。