Suppr超能文献

利用网格导向分子动力学探索通过α-溶血素的跨膜运输。

Exploring transmembrane transport through alpha-hemolysin with grid-steered molecular dynamics.

作者信息

Wells David B, Abramkina Volha, Aksimentiev Aleksei

机构信息

Department of Physics, University of Illinois at Urbana--Champaign, Urbana, Illinois 61801, USA.

出版信息

J Chem Phys. 2007 Sep 28;127(12):125101. doi: 10.1063/1.2770738.

Abstract

The transport of biomolecules across cell boundaries is central to cellular function. While structures of many membrane channels are known, the permeation mechanism is known only for a select few. Molecular dynamics (MD) is a computational method that can provide an accurate description of permeation events at the atomic level, which is required for understanding the transport mechanism. However, due to the relatively short time scales accessible to this method, it is of limited utility. Here, we present a method for all-atom simulation of electric field-driven transport of large solutes through membrane channels, which in tens of nanoseconds can provide a realistic account of a permeation event that would require a millisecond simulation using conventional MD. In this method, the average distribution of the electrostatic potential in a membrane channel under a transmembrane bias of interest is determined first from an all-atom MD simulation. This electrostatic potential, defined on a grid, is subsequently applied to a charged solute to steer its permeation through the membrane channel. We apply this method to investigate permeation of DNA strands, DNA hairpins, and alpha-helical peptides through alpha-hemolysin. To test the accuracy of the method, we computed the relative permeation rates of DNA strands having different sequences and global orientations. The results of the G-SMD simulations were found to be in good agreement in experiment.

摘要

生物分子跨细胞边界的运输是细胞功能的核心。虽然许多膜通道的结构已为人所知,但只有少数几种的渗透机制是清楚的。分子动力学(MD)是一种计算方法,能够在原子水平上准确描述渗透事件,而这对于理解运输机制是必要的。然而,由于该方法可及的时间尺度相对较短,其效用有限。在此,我们提出一种用于大溶质通过膜通道的电场驱动运输的全原子模拟方法,该方法在几十纳秒内就能对一个渗透事件给出逼真的描述,而使用传统分子动力学模拟则需要一毫秒。在这种方法中,首先通过全原子分子动力学模拟确定在感兴趣的跨膜偏压下膜通道中静电势的平均分布。这个定义在网格上的静电势随后应用于带电溶质,以引导其通过膜通道渗透。我们应用此方法研究DNA链、DNA发夹和α-螺旋肽通过α-溶血素的渗透。为测试该方法的准确性,我们计算了具有不同序列和整体取向的DNA链的相对渗透速率。发现广义Steered分子动力学(G-SMD)模拟的结果与实验结果高度吻合。

相似文献

1
Exploring transmembrane transport through alpha-hemolysin with grid-steered molecular dynamics.
J Chem Phys. 2007 Sep 28;127(12):125101. doi: 10.1063/1.2770738.
2
Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map.
Biophys J. 2005 Jun;88(6):3745-61. doi: 10.1529/biophysj.104.058727. Epub 2005 Mar 11.
3
Voltage-driven DNA translocations through a nanopore.
Phys Rev Lett. 2001 Apr 9;86(15):3435-8. doi: 10.1103/PhysRevLett.86.3435.
4
Water transport by the bacterial channel alpha-hemolysin.
Biochim Biophys Acta. 1999 Apr 14;1418(1):117-26. doi: 10.1016/s0005-2736(99)00031-0.
5
Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore.
Science. 1996 Dec 13;274(5294):1859-66. doi: 10.1126/science.274.5294.1859.
6
Continuum electrostatic calculations of the pKa of ionizable residues in an ion channel: dynamic vs. static input structure.
Eur Phys J E Soft Matter. 2010 Apr;31(4):429-39. doi: 10.1140/epje/i2010-10597-y. Epub 2010 Apr 25.
7
Driven DNA transport into an asymmetric nanometer-scale pore.
Phys Rev Lett. 2000 Oct 2;85(14):3057-60. doi: 10.1103/PhysRevLett.85.3057.
8
Molecular dynamics simulation of water permeation through the alpha-hemolysin channel.
J Biol Phys. 2016 Jan;42(1):133-46. doi: 10.1007/s10867-015-9396-x. Epub 2015 Aug 12.
9
Explicit channel conductance: can it be computed?
Biophys J. 2005 Jun;88(6):3742-3. doi: 10.1529/biophysj.105.060996. Epub 2005 Mar 11.
10
Functional truncated membrane pores.
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2425-30. doi: 10.1073/pnas.1312976111. Epub 2014 Jan 27.

引用本文的文献

1
In-cell structure and variability of pyrenoid Rubisco.
Nat Commun. 2025 Aug 20;16(1):7763. doi: 10.1038/s41467-025-62998-y.
2
Cholesterol-targeting Wnt-β-catenin signaling inhibitors for colorectal cancer.
Nat Chem Biol. 2025 Apr 16. doi: 10.1038/s41589-025-01870-y.
3
In-cell Structure and Variability of Pyrenoid Rubisco.
bioRxiv. 2025 Feb 27:2025.02.27.640608. doi: 10.1101/2025.02.27.640608.
4
Enabling Atomistic Modeling and Simulation of Complex Curved Cellular Membranes with xMAS Builder.
bioRxiv. 2025 Jan 19:2025.01.14.632907. doi: 10.1101/2025.01.14.632907.
5
Expanded Functionality and Portability for the Colvars Library.
J Phys Chem B. 2024 Nov 14;128(45):11108-11123. doi: 10.1021/acs.jpcb.4c05604. Epub 2024 Nov 5.
7
Atomistic characterization of β2-glycoprotein I domain V interaction with anionic membranes.
J Thromb Haemost. 2024 Nov;22(11):3277-3289. doi: 10.1016/j.jtha.2024.07.010. Epub 2024 Jul 22.
8
Genetically programmed synthetic cells for thermo-responsive protein synthesis and cargo release.
Nat Chem Biol. 2024 Oct;20(10):1380-1386. doi: 10.1038/s41589-024-01673-7. Epub 2024 Jul 5.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Single-molecule analysis of DNA-protein complexes using nanopores.
Nat Methods. 2007 Apr;4(4):315-7. doi: 10.1038/nmeth1021. Epub 2007 Mar 4.
3
Multi-nanopore force spectroscopy for DNA analysis.
Biophys J. 2007 Mar 1;92(5):1632-7. doi: 10.1529/biophysj.106.094060. Epub 2006 Dec 8.
4
Sequencing single molecules of DNA.
Curr Opin Chem Biol. 2006 Dec;10(6):628-37. doi: 10.1016/j.cbpa.2006.10.040. Epub 2006 Nov 20.
5
Effect of orientation in translocation of polymers through nanopores.
J Chem Phys. 2006 Aug 28;125(8):084906. doi: 10.1063/1.2338539.
6
Stochastic detection of enantiomers.
J Am Chem Soc. 2006 Aug 23;128(33):10684-5. doi: 10.1021/ja063485l.
7
Simulation of polymer translocation through protein channels.
Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5273-8. doi: 10.1073/pnas.0510725103. Epub 2006 Mar 27.
9
Molecular dynamics studies of the archaeal translocon.
Biophys J. 2006 Apr 1;90(7):2356-67. doi: 10.1529/biophysj.105.075291. Epub 2006 Jan 13.
10
The electromechanics of DNA in a synthetic nanopore.
Biophys J. 2006 Feb 1;90(3):1098-106. doi: 10.1529/biophysj.105.070672. Epub 2005 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验