Suppr超能文献

脂多糖和胞外聚合物对铜绿假单胞菌黏附作用的原子力显微镜研究

Atomic force microscopy study of the effect of lipopolysaccharides and extracellular polymers on adhesion of Pseudomonas aeruginosa.

作者信息

Atabek Arzu, Camesano Terri A

机构信息

Department of Chemical Engineering, Life Sciences and Bioengineering Center, Worcester Polytechnic Institute, 60 Prescott St., Worcester, MA 01605, USA.

出版信息

J Bacteriol. 2007 Dec;189(23):8503-9. doi: 10.1128/JB.00769-07. Epub 2007 Sep 28.

Abstract

The roles of lipopolysaccharides (LPS) and extracellular polymers (ECP) on the adhesion of Pseudomonas aeruginosa PAO1 (expresses the A-band and B-band of O antigen) and AK1401 (expresses the A-band but not the B-band) to silicon were investigated with atomic force microscopy (AFM) and related to biopolymer physical properties. Measurement of macroscopic properties showed that strain AK1401 is more negatively charged and slightly more hydrophobic than strain PAO1 is. Microscopic AFM investigations of individual bacteria showed differences in how the biopolymers interacted with silicon. PAO1 showed larger decay lengths in AFM approach cycles, suggesting that the longer polymers on PAO1 caused greater steric repulsion with the AFM tip. For both bacterial strains, the long-range interactions we observed (hundreds of nanometers) were inconsistent with the small sizes of LPS, suggesting that they were also influenced by ECP, especially polysaccharides. The AFM retraction profiles provide information on the adhesion strength of the biopolymers to silicon (F(adh)). For AK1401, the adhesion forces were only slightly lower (F(adh) = 0.51 nN compared to 0.56 nN for PAO1), but the adhesion events were concentrated over shorter distances. More than 90% of adhesion events for AK1401 were at distances of <600 nm, while >50% of adhesion events for PAO1 were at distances of >600 nm. The sizes of the observed molecules suggest that the adhesion of P. aeruginosa to silicon was controlled by ECP, in addition to LPS. Steric and electrostatic forces each contributed to the interfacial interactions between P. aeruginosa and the silicon surface.

摘要

利用原子力显微镜(AFM)研究了脂多糖(LPS)和细胞外聚合物(ECP)对铜绿假单胞菌PAO1(表达O抗原的A带和B带)和AK1401(表达A带但不表达B带)黏附于硅的作用,并将其与生物聚合物的物理性质相关联。宏观性质测量表明,菌株AK1401比菌株PAO1带更多负电荷且疏水性略强。对单个细菌的微观AFM研究显示了生物聚合物与硅相互作用方式的差异。PAO1在AFM接近循环中显示出更大的衰减长度,这表明PAO1上较长的聚合物与AFM尖端产生了更大的空间排斥力。对于这两种细菌菌株,我们观察到的长程相互作用(数百纳米)与LPS的小尺寸不一致,这表明它们也受到ECP的影响,尤其是多糖。AFM回缩曲线提供了生物聚合物与硅的黏附强度信息(F(adh))。对于AK1401,黏附力仅略低(F(adh) = 0.51 nN,而PAO1为0.56 nN),但黏附事件集中在更短的距离内。AK1401超过90%的黏附事件发生在<600 nm的距离处,而PAO1超过50%的黏附事件发生在>600 nm的距离处。观察到的分子大小表明,除了LPS外,铜绿假单胞菌对硅的黏附受ECP控制。空间力和静电力均对铜绿假单胞菌与硅表面之间的界面相互作用有贡献。

相似文献

2
Importance of LPS structure on protein interactions with Pseudomonas aeruginosa.
Colloids Surf B Biointerfaces. 2008 Nov 15;67(1):115-21. doi: 10.1016/j.colsurfb.2008.08.013. Epub 2008 Aug 23.
3
4
Relating the physical properties of Pseudomonas aeruginosa lipopolysaccharides to virulence by atomic force microscopy.
J Bacteriol. 2011 Mar;193(5):1259-66. doi: 10.1128/JB.01308-10. Epub 2010 Dec 10.
5
Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109.
Environ Sci Technol. 2003 May 15;37(10):2173-83. doi: 10.1021/es026159o.
8
Heterogeneity in bacterial surface polysaccharides, probed on a single-molecule basis.
Biomacromolecules. 2002 Jul-Aug;3(4):661-7. doi: 10.1021/bm015648y.
9
Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly(ethylene oxide) brush.
Microbiology (Reading). 2006 Sep;152(Pt 9):2673-2682. doi: 10.1099/mic.0.29005-0.
10
Atomic force microscopy study of the role of LPS O-antigen on adhesion of E. coli.
J Mol Recognit. 2009 Sep-Oct;22(5):347-55. doi: 10.1002/jmr.955.

引用本文的文献

1
Serotype switching in Pseudomonas aeruginosa ST111 enhances adhesion and virulence.
PLoS Pathog. 2024 Dec 2;20(12):e1012221. doi: 10.1371/journal.ppat.1012221. eCollection 2024 Dec.
2
AFM Force Mapping Elucidates Pilus Deployment and Key Lifestyle-Dependent Surface Properties in .
Langmuir. 2023 Mar 28;39(12):4233-4244. doi: 10.1021/acs.langmuir.2c03134. Epub 2023 Mar 16.
3
Effect of Membrane Pore Size on Membrane Fouling of Corundum Ceramic Membrane in MBR.
Int J Environ Res Public Health. 2023 Mar 4;20(5):4558. doi: 10.3390/ijerph20054558.
4
Cold plasma surface treatments to prevent biofilm formation in food industries and medical sectors.
Appl Microbiol Biotechnol. 2022 Jan;106(1):81-100. doi: 10.1007/s00253-021-11715-y. Epub 2021 Dec 10.
5
AFM Study of Nanoscale Membrane Perturbation Induced by Antimicrobial Lipopeptide C KYR.
Membranes (Basel). 2021 Jun 30;11(7):495. doi: 10.3390/membranes11070495.
6
Using Atomic Force Microscopy To Illuminate the Biophysical Properties of Microbes.
ACS Appl Bio Mater. 2020 Jan 21;3(1):143-155. doi: 10.1021/acsabm.9b00973. Epub 2019 Dec 11.
7
The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces.
Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12598-12605. doi: 10.1073/pnas.1916680117. Epub 2020 May 26.
8
Fluorescence Spectroscopy Analysis of the Bacteria-Mineral Interface: Adsorption of Lipopolysaccharides to Silica and Alumina.
Langmuir. 2020 Feb 25;36(7):1623-1632. doi: 10.1021/acs.langmuir.9b02158. Epub 2020 Feb 11.
9
A simple way to improve a conventional A/O-MBR for high simultaneous carbon and nutrient removal from synthetic municipal wastewater.
PLoS One. 2019 Nov 22;14(11):e0214976. doi: 10.1371/journal.pone.0214976. eCollection 2019.

本文引用的文献

3
Role of Cell Surface Lipopolysaccharides in Escherichia coli K12 adhesion and transport.
Langmuir. 2004 Aug 31;20(18):7736-46. doi: 10.1021/la049511f.
5
Structure of bacterial lipopolysaccharides.
Carbohydr Res. 2003 Nov 14;338(23):2431-47. doi: 10.1016/j.carres.2003.07.010.
8
Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms.
Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7907-12. doi: 10.1073/pnas.1231792100. Epub 2003 Jun 16.
9
Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry.
Adv Colloid Interface Sci. 2002 Aug 5;98(3):341-463. doi: 10.1016/s0001-8686(02)00004-0.
10
Role of biofilms in antimicrobial resistance.
ASAIO J. 2000 Nov-Dec;46(6):S47-52. doi: 10.1097/00002480-200011000-00037.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验