Liu X Sherry, Sajda Paul, Saha Punam K, Wehrli Felix W, Bevill Grant, Keaveny Tony M, Guo X Edward
Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
J Bone Miner Res. 2008 Feb;23(2):223-35. doi: 10.1359/jbmr.071009.
Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anisotropic mechanical properties of trabecular bone.
Standard morphological analyses of trabecular architecture lack explicit segmentations of individual trabecular plates and rods. In this study, a complete volumetric decomposition technique was developed to segment trabecular bone microstructure into individual plates and rods. Contributions of trabecular type-associated morphological parameters to the anisotropic elastic moduli of trabecular bone were studied.
Seventy-one human trabecular bone samples from the femoral neck (FN), tibia, and vertebral body (VB) were imaged using muCT or serial milling. Complete volumetric decomposition was applied to segment trabecular bone microstructure into individual plates and rods. The orientation of each individual trabecula was determined, and the axial bone volume fractions (aBV/TV), axially aligned bone volume fraction along each orthotropic axis, were correlated with the elastic moduli. The microstructural type-associated morphological parameters were derived and compared with standard morphological parameters. Their contributions to the anisotropic elastic moduli, calculated by finite element analysis (FEA), were evaluated and compared.
The distribution of trabecular orientation suggested that longitudinal plates and transverse rods dominate at all three anatomic sites. aBV/TV along each axis, in general, showed a better correlation with the axial elastic modulus (r(2) = 0.95 approximately 0.99) compared with BV/TV (r(2) = 0.93 approximately 0.94). The plate-associated morphological parameters generally showed higher correlations with the corresponding standard morphological parameters than the rod-associated parameters. Multiple linear regression models of six elastic moduli with individual trabeculae segmentation (ITS)-based morphological parameters (adjusted r(2) = 0.95 approximately 0.98) performed equally well as those with standard morphological parameters (adjusted r(2) = 0.94 approximately 0.97) but revealed specific contributions from individual trabecular plates or rods.
The ITS-based morphological analyses provide a better characterization of the morphology and trabecular orientation of trabecular bone. The axial loading of trabecular bone is mainly sustained by the axially aligned trabecular bone volume. Results suggest that trabecular plates dominate the overall elastic properties of trabecular bone.
小梁板和小梁杆是决定小梁骨力学性能的重要微观结构特征。采用对单个小梁板和小梁杆进行完整的体积分解方法,评估了71个人小梁骨样本的取向和形态。基于ITS的形态学分析能更好地表征微观结构,并有助于预测小梁骨的各向异性力学性能。
小梁结构的标准形态学分析缺乏对单个小梁板和小梁杆的明确分割。在本研究中,开发了一种完整的体积分解技术,将小梁骨微结构分割为单个的板和杆。研究了与小梁类型相关的形态学参数对小梁骨各向异性弹性模量的贡献。
使用微计算机断层扫描(μCT)或连续铣削对71个来自股骨颈(FN)、胫骨和椎体(VB)的人小梁骨样本进行成像。应用完整的体积分解将小梁骨微结构分割为单个的板和杆。确定每个小梁的取向,并将轴向骨体积分数(aBV/TV),即沿每个正交各向异性轴的轴向排列骨体积分数,与弹性模量进行关联。推导与微结构类型相关的形态学参数,并与标准形态学参数进行比较。通过有限元分析(FEA)计算它们对各向异性弹性模量的贡献,并进行评估和比较。
小梁取向分布表明,纵向板和横向杆在所有三个解剖部位占主导。一般来说,与总体积骨体积分数(BV/TV,r² = 0.93至0.94)相比,沿每个轴的aBV/TV与轴向弹性模量的相关性更好(r² = 0.95至0.99)。与小梁杆相关的参数相比,与小梁板相关的形态学参数通常与相应的标准形态学参数具有更高的相关性。基于单个小梁分割(ITS)的形态学参数对六个弹性模量的多元线性回归模型(调整后r² = 0.95至0.98)与基于标准形态学参数的模型(调整后r² = 0.94至0.97)表现相当,但揭示了单个小梁板或小梁杆的特定贡献。
基于ITS的形态学分析能更好地表征小梁骨的形态和小梁取向。小梁骨的轴向载荷主要由轴向排列的小梁骨体积承受。结果表明,小梁板主导小梁骨的整体弹性性能。