Li Xuebing, Iglesia Enrique
Department of Chemical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA.
Chemistry. 2007;13(33):9324-30. doi: 10.1002/chem.200700579.
The direct oxidation of ethanol to acetic acid is catalyzed by multicomponent metal oxides (Mo-V-NbO(x)) prepared by precipitation in the presence of colloidal TiO(2) (Mo(0.61)V(0.31)Nb(0.08)O(x)/TiO(2)). Acetic acid synthesis rates and selectivities (~95 % even at 100 % ethanol conversion) were much higher than in previous reports. The presence of TiO(2) during synthesis led to more highly active surface areas without detectable changes in the reactivity or selectivity of exposed active oxide surfaces. Ethanol oxidation proceeds via acetaldehyde intermediates that are converted to acetic acid. Water increases acetic acid selectivity by inhibiting acetaldehyde synthesis more strongly than its oxidation to acetic acid, thus minimizing prevalent acetaldehyde concentrations and its intervening conversion to CO(x). Kinetic and isotopic effects indicate that C-H bond activation in chemisorbed ethoxide species limits acetaldehyde synthesis rates and overall rates of ethanol conversion to acetic acid. The VO(x) component in Mo-V-Nb is responsible for the high reactivity of these materials. Mo and Nb oxide components increase the accessibility and reducibility of VO(x) domains, while concurrently decreasing the number of unselective V-O-Ti linkages in VO(x) domains dispersed on TiO(2).
乙醇直接氧化为乙酸是由在胶体TiO₂存在下通过沉淀法制备的多组分金属氧化物(Mo-V-NbO(x))催化的(Mo(0.61)V(0.31)Nb(0.08)O(x)/TiO₂)。乙酸的合成速率和选择性(即使在乙醇转化率为100%时也约为95%)远高于先前的报道。合成过程中TiO₂的存在导致活性表面积更高,而暴露的活性氧化物表面的反应性或选择性没有可检测到的变化。乙醇氧化通过乙醛中间体进行,乙醛再转化为乙酸。水通过比氧化乙醛更强烈地抑制乙醛合成来提高乙酸选择性,从而将普遍存在的乙醛浓度及其向CO(x)的中间转化降至最低。动力学和同位素效应表明,化学吸附的乙醇盐物种中的C-H键活化限制了乙醛合成速率以及乙醇转化为乙酸的总速率。Mo-V-Nb中的VO(x)组分是这些材料具有高反应性的原因。Mo和Nb氧化物组分增加了VO(x)域的可及性和还原性,同时减少了分散在TiO₂上的VO(x)域中非选择性V-O-Ti键的数量。