Suppr超能文献

噬菌体内部双链DNA的构象取决于衣壳的大小和形状。

The conformation of double-stranded DNA inside bacteriophages depends on capsid size and shape.

作者信息

Petrov Anton S, Boz Mustafa Burak, Harvey Stephen C

机构信息

School of Biology, Georgia Institute of Technology, 310 Ferst Dr., Atlanta, GA 30332, USA.

出版信息

J Struct Biol. 2007 Nov;160(2):241-8. doi: 10.1016/j.jsb.2007.08.012. Epub 2007 Aug 29.

Abstract

The packaging of double-stranded DNA into bacteriophages leads to the arrangement of the genetic material into highly-packed and ordered structures. Although modern experimental techniques reveal the most probable location of DNA inside viral capsids, the individual conformations of DNA are yet to be determined. In the current study we present the results of molecular dynamics simulations of the DNA packaging into several bacteriophages performed within the framework of a coarse-grained model. The final DNA conformations depend on the size and shape of the capsid, as well as the size of the protein portal, if any. In particular, isometric capsids with small or absent portals tend to form concentric spools, whereas the presence of a large portal favors coaxial spooling; slightly and highly elongated capsids result in folded and twisted toroidal conformations, respectively. The results of the simulations also suggest that the predominant factor in defining the global DNA arrangement inside bacteriophages is the minimization of the bending stress upon packaging.

摘要

将双链DNA包装到噬菌体中会导致遗传物质排列成高度密集且有序的结构。尽管现代实验技术揭示了DNA在病毒衣壳内最可能的位置,但DNA的个体构象仍有待确定。在当前研究中,我们展示了在粗粒度模型框架内对几种噬菌体进行DNA包装的分子动力学模拟结果。最终的DNA构象取决于衣壳的大小和形状,以及蛋白质门户(如果有的话)的大小。特别是,具有小门户或无门户的等轴衣壳倾向于形成同心卷轴,而大门户的存在有利于同轴卷轴形成;略微细长和高度细长的衣壳分别导致折叠和扭曲的环形构象。模拟结果还表明,定义噬菌体内部DNA整体排列的主要因素是包装时弯曲应力的最小化。

相似文献

1
The conformation of double-stranded DNA inside bacteriophages depends on capsid size and shape.
J Struct Biol. 2007 Nov;160(2):241-8. doi: 10.1016/j.jsb.2007.08.012. Epub 2007 Aug 29.
2
Role of DNA-DNA interactions on the structure and thermodynamics of bacteriophages Lambda and P4.
J Struct Biol. 2011 Apr;174(1):137-46. doi: 10.1016/j.jsb.2010.11.007. Epub 2010 Nov 11.
3
Structural and thermodynamic principles of viral packaging.
Structure. 2007 Jan;15(1):21-7. doi: 10.1016/j.str.2006.11.013.
4
Visualization of bacteriophage T3 capsids with DNA incompletely packaged in vivo.
J Mol Biol. 2008 Dec 31;384(5):1384-99. doi: 10.1016/j.jmb.2008.10.012. Epub 2008 Oct 14.
5
Polymorphism of DNA conformation inside the bacteriophage capsid.
J Biol Phys. 2013 Mar;39(2):201-13. doi: 10.1007/s10867-013-9315-y. Epub 2013 Apr 12.
6
DNA knots reveal a chiral organization of DNA in phage capsids.
Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9165-9. doi: 10.1073/pnas.0409323102. Epub 2005 Jun 15.
7
Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms.
Cell Mol Life Sci. 2007 Jun;64(12):1484-97. doi: 10.1007/s00018-007-6451-1.
8
Capsids and Portals Influence Each Other's Conformation During Assembly and Maturation.
J Mol Biol. 2020 Mar 27;432(7):2015-2029. doi: 10.1016/j.jmb.2020.01.022. Epub 2020 Feb 6.
9
Packaging double-helical DNA into viral capsids: structures, forces, and energetics.
Biophys J. 2008 Jul;95(2):497-502. doi: 10.1529/biophysj.108.131797. Epub 2008 May 16.
10
The structure of an infectious P22 virion shows the signal for headful DNA packaging.
Science. 2006 Jun 23;312(5781):1791-5. doi: 10.1126/science.1127981. Epub 2006 May 18.

引用本文的文献

1
Nucleic Acid Packaging in Viruses.
Subcell Biochem. 2024;105:469-502. doi: 10.1007/978-3-031-65187-8_13.
2
The structure and physical properties of a packaged bacteriophage particle.
Nature. 2024 Mar;627(8005):905-914. doi: 10.1038/s41586-024-07150-4. Epub 2024 Mar 6.
4
Quantitative Study of the Chiral Organization of the Phage Genome Induced by the Packaging Motor.
Biophys J. 2020 May 5;118(9):2103-2116. doi: 10.1016/j.bpj.2020.03.030. Epub 2020 Apr 14.
6
Compaction of quasi-one-dimensional elastoplastic materials.
Nat Commun. 2017 Jun 6;8:15568. doi: 10.1038/ncomms15568.
7
Shapes of minimal-energy DNA ropes condensed in confinement.
Sci Rep. 2016 Jul 1;6:29012. doi: 10.1038/srep29012.
9
Nucleotide-type chemical shift assignment of the encapsulated 40 kbp dsDNA in intact bacteriophage T7 by MAS solid-state NMR.
J Biomol NMR. 2014 Aug;59(4):219-30. doi: 10.1007/s10858-014-9840-4. Epub 2014 May 30.
10
Reply to the comment by S. Harvey on "entropy, energy, and bending of DNA in viral capsids".
Biophys J. 2014 Jan 21;106(2):493-6. doi: 10.1016/j.bpj.2013.11.4497.

本文引用的文献

1
YUP: A Molecular Simulation Program for Coarse-Grained and Multi-Scaled Models.
J Chem Theory Comput. 2006 May 1;2(3):529-540. doi: 10.1021/ct050323r. Epub 2006 Mar 18.
2
Packaging of DNA by bacteriophage epsilon15: structure, forces, and thermodynamics.
Structure. 2007 Jul;15(7):807-12. doi: 10.1016/j.str.2007.05.005.
3
DNA packaging and delivery machines in tailed bacteriophages.
Curr Opin Struct Biol. 2007 Apr;17(2):237-43. doi: 10.1016/j.sbi.2007.03.011. Epub 2007 Mar 28.
4
Structural and thermodynamic principles of viral packaging.
Structure. 2007 Jan;15(1):21-7. doi: 10.1016/j.str.2006.11.013.
5
Structural changes of bacteriophage phi29 upon DNA packaging and release.
EMBO J. 2006 Nov 1;25(21):5229-39. doi: 10.1038/sj.emboj.7601386. Epub 2006 Oct 19.
6
Polymer packaging and ejection in viral capsids: shape matters.
Phys Rev Lett. 2006 May 26;96(20):208102. doi: 10.1103/PhysRevLett.96.208102.
7
Cryo-EM asymmetric reconstruction of bacteriophage P22 reveals organization of its DNA packaging and infecting machinery.
Structure. 2006 Jun;14(6):1073-82. doi: 10.1016/j.str.2006.05.007. Epub 2006 May 25.
8
The structure of an infectious P22 virion shows the signal for headful DNA packaging.
Science. 2006 Jun 23;312(5781):1791-5. doi: 10.1126/science.1127981. Epub 2006 May 18.
9
Langevin dynamics simulations of genome packing in bacteriophage.
Biophys J. 2006 Jul 1;91(1):25-41. doi: 10.1529/biophysj.105.073429. Epub 2006 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验