Yan Bing, Qiao Xiao-Fei
Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, China.
J Phys Chem B. 2007 Nov 1;111(43):12362-74. doi: 10.1021/jp073531j. Epub 2007 Oct 9.
2-Hydroxynicotinic acid (HNA) was grafted by 3-(triethoxysilyl)propyl isocyanate (TEPIC) to achieve the molecular precursor HNA-Si through the hydrogen-transfer nucleophilic addition reaction between the hydroxyl group of HNA and the isocyanate group of TEPIC. Then, a chemically bonded rare-earth/inorganic polymeric hybrid material (A) was constructed using HNA-Si as a bridge molecule that can both coordinate to rare-earth ions (HNA-Si-RE) and form an inorganic Si-O network with tetraethoxysilane (TEOS) after cohydrolysis and copolycondensation processes. Further, three types of novel rare-earth/inorganic/organic polymeric hybrids (B-D) were assembled by the introduction of three different organic polymeric chains into the above system. First, methacrylic acid (MAA) [or methacrylic acid and acrylamide (ALM) in the molar ratio of 1:1] was mixed to polymerize (or copolymerize) with benzoyl peroxide (BPO) as the initiator to form poly(methacrylic acid) (PMAA) [or poly(methacrylic and acrylamide) (PMAALM)], and then PMAA or PMAALM was added to the precursor HNA-Si before the assembly of HNA-Si-RE, resulting in the hybrid materials HNA-Si-RE-PMAA (B) and HNA-Si-RE-PMAALM (C). Second, poly(vinylpyrrolidone) (PVP) was added to coordinate to the rare-earth ions by the carbonyl group in the complex HNA-Si-RE, to achieve the hybrid HNA-Si-RE-PVP (D). All of these hybrid materials exhibit homogeneous, regular, and ordered microstructures and morphologies, suggesting the occurrence of self-assembly of the inorganic network and organic chain. Measurements of the photoluminescent properties of these materials show that the ternary rare-earth/inorganic/organic polymeric hybrids present stronger luminescent intensities, longer lifetimes, and higher luminescent quantum efficiencies than the binary rare-earth/inorganic polymeric hybrids, indicating that the introduction of the organic polymer chain is a benefit for the luminescence of the overall hybrid system.
通过3-(三乙氧基硅基)丙基异氰酸酯(TEPIC)将2-羟基烟酸(HNA)接枝,通过HNA的羟基与TEPIC的异氰酸酯基团之间的氢转移亲核加成反应得到分子前驱体HNA-Si。然后,以HNA-Si作为桥联分子构建化学键合的稀土/无机聚合物杂化材料(A),HNA-Si既能与稀土离子配位(HNA-Si-RE),又能在共水解和共缩聚过程后与四乙氧基硅烷(TEOS)形成无机Si-O网络。此外,通过将三种不同的有机聚合物链引入上述体系,组装了三种新型的稀土/无机/有机聚合物杂化物(B-D)。首先,将甲基丙烯酸(MAA)[或摩尔比为1:1的甲基丙烯酸和丙烯酰胺(ALM)]混合,以过氧化苯甲酰(BPO)作为引发剂进行聚合(或共聚),形成聚甲基丙烯酸(PMAA)[或聚(甲基丙烯酸和丙烯酰胺)(PMAALM)],然后在组装HNA-Si-RE之前将PMAA或PMAALM添加到前驱体HNA-Si中,得到杂化材料HNA-Si-RE-PMAA(B)和HNA-Si-RE-PMAALM(C)。其次,添加聚乙烯吡咯烷酮(PVP),使其通过配合物HNA-Si-RE中的羰基与稀土离子配位,得到杂化物HNA-Si-RE-PVP(D)。所有这些杂化材料均呈现出均匀、规则且有序的微观结构和形态,表明无机网络和有机链发生了自组装。对这些材料的光致发光性能的测量表明,与二元稀土/无机聚合物杂化物相比,三元稀土/无机/有机聚合物杂化物具有更强的发光强度、更长的寿命和更高的发光量子效率,这表明有机聚合物链的引入有利于整个杂化体系的发光。