Mercer Sean M, Banks Joel M, Leaist Derek G
Department of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, Nova Scotia, Canada B2G 2W5.
Phys Chem Chem Phys. 2007 Oct 28;9(40):5457-68. doi: 10.1039/b706543d. Epub 2007 Aug 17.
Propagating fronts can be generated in solution by combining diffusion and chemical reactions with an autocatalytic feedback mechanism. Front propagation is usually analyzed in terms of the rate equations for the chemical reactions and Fick's laws of molecular diffusion. In practice, however, reaction-diffusion fronts are known mainly for aqueous electrolyte solutions. A more accurate description of front propagation in these systems is developed by using Nernst-Planck (NP) transport equations. This treatment includes diffusion fluxes driven by the concentration gradients and, for the ionic species, the migration fluxes driven by the electric field which is generated internally by the diffusion of ions of different mobility. NP equations are used to describe propagating fronts for the iodate oxidation of aqueous arsenous acid. The analysis provides a detailed picture of front structure and propagation, including concentration profiles, reaction rate profiles and velocity profiles for the solution species. After a short induction period, fully-developed fronts reach steady velocities and the profiles across the fronts transformed from laboratory coordinates to the frame of reference moving with the front become time-independent. The velocities of the autocatalytic I(-) ions ahead of the fronts are nearly identical to the steady front velocities. Electric fields generated by ionic diffusion across the fronts reach maximum strengths of about 0.4 V cm(-1), producing ion migration velocities as large as 50% of the front velocities.
通过将扩散、化学反应与自催化反馈机制相结合,可以在溶液中产生传播前沿。前沿传播通常根据化学反应的速率方程和分子扩散的菲克定律进行分析。然而,在实际中,反应扩散前沿主要见于水性电解质溶液。通过使用能斯特 - 普朗克(NP)输运方程,可以对这些体系中的前沿传播进行更精确的描述。这种处理方法包括由浓度梯度驱动的扩散通量,对于离子物种,还包括由不同迁移率离子扩散在内部产生的电场驱动的迁移通量。NP方程用于描述亚砷酸水溶液碘酸盐氧化的传播前沿。该分析提供了前沿结构和传播的详细情况,包括溶液物种的浓度分布、反应速率分布和速度分布。经过短暂的诱导期后,充分发展的前沿达到稳定速度,并且从前沿的实验室坐标转换到随前沿移动的参考系后的前沿分布变得与时间无关。前沿前方自催化I(-)离子的速度几乎与前沿稳定速度相同。离子扩散穿过前沿产生的电场达到约0.4 V cm(-1)的最大强度,产生的离子迁移速度高达前沿速度的50%。