Suppr超能文献

关于使用维特比路径以及隐马尔可夫模型似然信息进行在线签名验证。

On using the Viterbi path along with HMM likelihood information for online signature verification.

作者信息

Van Bao Ly, Garcia-Salicetti Sonia, Dorizzi Bernadette

机构信息

Umanis, 92301 Levallois-Perret, France.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2007 Oct;37(5):1237-47. doi: 10.1109/tsmcb.2007.895323.

Abstract

This paper describes a system using two complementary sorts of information issuing from a hidden Markov model (HMM) for online signature verification. At each point of the signature, 25 features are extracted. These features are normalized before training and testing in order to improve the performance of the system. This normalization is writer-dependent; it exploits only five genuine signatures used to train the writer HMM. A claimed identity is confirmed when the arithmetic mean of two similarity scores, obtained on an input signature, is higher than a threshold. The first score is related to the likelihood given by the HMM of the claimed identity; the second score is related to the segmentation given by such an HMM on the input signature. A personalized score normalization is also proposed before fusion. Our approach is evaluated on several online signature databases, such as BIOMET, PHILIPS, MCYT, and SVC2004, which were captured under different acquisition conditions. For the first time in signature verification, we show that the fusion of segmentation-based information generated by the HMM with likelihood-based information considerably improves the quality of the verification system. Finally, owing to our two-stage normalization (at the feature and score levels), we show that our system results in more stable client-score distributions across databases and in a better separation between the distributions of client and impostor scores.

摘要

本文描述了一种利用隐马尔可夫模型(HMM)发出的两种互补信息进行在线签名验证的系统。在签名的每个点上,提取25个特征。在训练和测试之前对这些特征进行归一化处理,以提高系统的性能。这种归一化是依赖于书写者的;它仅利用用于训练书写者HMM的五个真实签名。当在输入签名上获得的两个相似度得分的算术平均值高于阈值时,所声称的身份被确认。第一个得分与所声称身份的HMM给出的似然度有关;第二个得分与该HMM对输入签名给出的分割有关。在融合之前还提出了个性化的得分归一化。我们的方法在几个在线签名数据库上进行了评估,如BIOMET、PHILIPS、MCYT和SVC2004,这些数据库是在不同采集条件下捕获的。在签名验证中,我们首次表明,将HMM生成的基于分割的信息与基于似然度的信息进行融合,可显著提高验证系统的质量。最后,由于我们的两阶段归一化(在特征和得分级别),我们表明我们的系统在不同数据库中产生更稳定的客户得分分布,并且在客户和冒名顶替者得分分布之间实现更好的分离。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验