Ben-Ari Yehezkel, Gaiarsa Jean-Luc, Tyzio Roman, Khazipov Rustem
Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
Physiol Rev. 2007 Oct;87(4):1215-84. doi: 10.1152/physrev.00017.2006.
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
发育中的神经网络遵循共同规则,从沉默细胞转变为通过数千个突触运作的共同激活网络。本综述探讨了其中一些规则,特别是那些与神经递质γ-氨基丁酸(GABA)的关键作用有关的规则,GABA主要通过氯离子通透性GABA(A)受体通道发挥作用。在所有被研究的发育中的动物物种和脑结构中,神经元在早期阶段细胞内氯离子浓度较高,导致氯离子外流,GABA在未成熟神经元中发挥兴奋作用。这会引发钠峰电位,激活电压门控钙通道,并通过消除电压依赖性镁离子阻滞与NMDA通道协同作用。GABA信号传导也在谷氨酸能传递之前建立,这表明GABA是早期发育过程中的主要兴奋性神经递质。事实上,甚至在突触形成之前,GABA信号传导就可以调节细胞周期和迁移。这些规则的结果是,发育中的网络主要通过GABA的兴奋作用及其与谷氨酸信号的协同相互作用产生原始的网络活动模式,特别是巨大去极化电位(GDPs)。这些早期类型的网络活动可能是神经元同步放电从而“连接在一起”所必需的,以便形成皮质网络内的功能单元。此外,去极化的GABA对突触可塑性和病理损伤有强烈影响,特别是未成熟脑的癫痫发作。总之,有人认为未成熟细胞中兴奋性GABA的进化保守作用为神经元网络中突触的形成和活动提供了重要机制。