Chelmowski Rolf, Prekelt Andreas, Grunwald Christian, Wöll Christof
Physikalische Chemie I, Ruhr-Universität Bochum, 44780 Bochum, Germany.
J Phys Chem A. 2007 Dec 13;111(49):12295-303. doi: 10.1021/jp074847u. Epub 2007 Oct 12.
The adsorption of multiple protein layers on biotinylated organic surfaces has been characterized using surface plasmon resonance (SPR) and atomic force microscopy (AFM). Diffusion-limited loading of the biotinylated self-assembled monolayers (SAMs) ensures a precise control of the streptavidin surface density. For the subsequent interaction with biotinylated peroxidase, SPR data hint at a streptavidin density dependent orientation during peroxidase adsorption. Microcontact printed well-defined two-dimensional patterned surfaces of biotinylated organothiols and protein-resistant OEG-thiols allow an in-situ differentiation of specific and nonspecific adsorption (e.g., mono- vs multilayer adsorption). Additionally, the very important issue of biological activity of surface-bound enzymes is addressed by comparing the enzyme activities in solution with that for surface-bound species.
利用表面等离子体共振(SPR)和原子力显微镜(AFM)对生物素化有机表面上多层蛋白质的吸附进行了表征。生物素化自组装单分子层(SAMs)的扩散限制负载确保了对链霉亲和素表面密度的精确控制。对于随后与生物素化过氧化物酶的相互作用,SPR数据表明在过氧化物酶吸附过程中,链霉亲和素密度依赖取向。微接触印刷生物素化有机硫醇和抗蛋白质的OEG硫醇的明确定义的二维图案表面允许原位区分特异性和非特异性吸附(例如,单层与多层吸附)。此外,通过比较溶液中酶活性与表面结合物种的酶活性,解决了表面结合酶生物活性这一非常重要的问题。