Kuchiev M Yu
School of Physics, University of New South Wales, Sydney 2052, Australia.
Phys Rev Lett. 2007 Sep 28;99(13):130404. doi: 10.1103/PhysRevLett.99.130404. Epub 2007 Sep 26.
A strong laser field and the Coulomb field of a nucleus can produce e(+) e(-) pairs. It is shown for the first time that there is a large probability that electrons and positrons created in this process collide after one or several oscillations of the laser field. These collisions can take place at high energy, resulting in several phenomena. The quasielastic collision e(+) e(-) --> e(+) e(-) allows acceleration of leptons in the laser field to higher energies. The inelastic collisions allow production of high-energy photons e(+) e(-) --> 2 gamma and muons e(+) e(-) --> micro(+) micro(-). The yield of high-energy photons and muons produced via this mechanism exceeds exponentially their production through conventional direct creation in laser and Coulomb fields. A relation of the phenomena considered with the antenna mechanism of multiphoton absorption in atoms is discussed.