Bassett J H Duncan, Williams Allan J, Murphy Elaine, Boyde Alan, Howell Peter G T, Swinhoe Rowan, Archanco Marta, Flamant Frédéric, Samarut Jacques, Costagliola Sabine, Vassart Gilbert, Weiss Roy E, Refetoff Samuel, Williams Graham R
Molecular Endocrinology Group, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, Du Cane Road, London, United Kingdom.
Mol Endocrinol. 2008 Feb;22(2):501-12. doi: 10.1210/me.2007-0221. Epub 2007 Oct 11.
By proposing TSH as a key negative regulator of bone turnover, recent studies in TSH receptor (TSHR) null mice challenged the established view that skeletal responses to disruption of the hypothalamic-pituitary-thyroid axis result from altered thyroid hormone (T(3)) action in bone. Importantly, this hypothesis does not explain the increased risk of osteoporosis in Graves' disease patients, in which circulating TSHR-stimulating antibodies are pathognomonic. To determine the relative importance of T(3) and TSH in bone, we compared the skeletal phenotypes of two mouse models of congenital hypothyroidism in which the normal reciprocal relationship between thyroid hormones and TSH was intact or disrupted. Pax8 null (Pax8(-/-)) mice have a 1900-fold increase in TSH and a normal TSHR, whereas hyt/hyt mice have a 2300-fold elevation of TSH but a nonfunctional TSHR. We reasoned these mice must display opposing skeletal phenotypes if TSH has a major role in bone, whereas they would be similar if thyroid hormone actions predominate. Pax8(-/-) and hyt/hyt mice both displayed delayed ossification, reduced cortical bone, a trabecular bone remodeling defect, and reduced bone mineralization, thus indicating that the skeletal abnormalities of congenital hypothyroidism are independent of TSH. Treatment of primary osteoblasts and osteoclasts with TSH or a TSHR-stimulating antibody failed to induce a cAMP response. Furthermore, TSH did not affect the differentiation or function of osteoblasts or osteoclasts in vitro. These data indicate the hypothalamic-pituitary-thyroid axis regulates skeletal development via the actions of T(3).
通过提出促甲状腺激素(TSH)作为骨转换的关键负调节因子,最近对促甲状腺激素受体(TSHR)基因敲除小鼠的研究挑战了已确立的观点,即下丘脑 - 垂体 - 甲状腺轴破坏后的骨骼反应是由骨中甲状腺激素(T3)作用改变所致。重要的是,这一假说无法解释格雷夫斯病患者骨质疏松风险增加的现象,在该疾病中,循环中的TSHR刺激抗体具有诊断意义。为了确定T3和TSH在骨骼中的相对重要性,我们比较了两种先天性甲状腺功能减退小鼠模型的骨骼表型,其中甲状腺激素与TSH之间正常的相互关系保持完整或被破坏。Pax8基因敲除(Pax8(-/-))小鼠的TSH升高1900倍且TSHR正常,而hyt/hyt小鼠的TSH升高2300倍但TSHR无功能。我们推断,如果TSH在骨骼中起主要作用,这些小鼠必然表现出相反的骨骼表型,而如果甲状腺激素作用占主导,则它们会相似。Pax8(-/-)和hyt/hyt小鼠均表现出骨化延迟、皮质骨减少、小梁骨重塑缺陷以及骨矿化减少,这表明先天性甲状腺功能减退所致的骨骼异常与TSH无关。用TSH或TSHR刺激抗体处理原代成骨细胞和破骨细胞未能诱导cAMP反应。此外,TSH在体外不影响成骨细胞或破骨细胞的分化或功能。这些数据表明下丘脑 - 垂体 - 甲状腺轴通过T3的作用调节骨骼发育。