Nishino Kunihiko, Nikaido Eiji, Yamaguchi Akihito
Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
J Bacteriol. 2007 Dec;189(24):9066-75. doi: 10.1128/JB.01045-07. Epub 2007 Oct 12.
Multidrug-resistant strains of Salmonella are now encountered frequently, and the rates of multidrug resistance have increased considerably in recent years. Here, we report that the two-component regulatory system BaeSR increases multidrug and metal resistance in Salmonella through the induction of drug efflux systems. Screening of random fragments of genomic DNA for the ability to increase beta-lactam resistance in Salmonella enterica led to the isolation of a plasmid containing baeR, which codes for the response regulator of BaeSR. When overexpressed, baeR significantly increased the resistance of the delta acrB strain to oxacillin, cloxacillin, and nafcillin. baeR overexpression conferred resistance to novobiocin and deoxycholate, as well as to beta-lactams in Salmonella. The increase in drug resistance caused by baeR overexpression was completely suppressed by deletion of the multifunctional outer membrane channel gene tolC. TolC interacts with different drug efflux systems. Among the nine drug efflux systems in Salmonella, quantitative real-time PCR analysis showed that BaeR induced the expression of acrD and mdtABC. Double deletion of these two genes completely suppressed BaeR-mediated multidrug resistance, whereas single deletion of either gene did not. The promoter regions of acrD and mdtABC harbor binding sites for the response regulator BaeR, which activates acrD and mdtABC transcription in response to indole, copper, and zinc. In addition to their role in multidrug resistance, we found that BaeSR, AcrD, and MdtABC contribute to copper and zinc resistance in Salmonella. Our results indicate that the BaeSR system increases multidrug and metal resistance in Salmonella by inducing the AcrD and MdtABC drug efflux systems. We found a previously uncharacterized physiological role for the AcrD and MdtABC multidrug efflux systems in metal resistance.
现在经常会遇到多重耐药的沙门氏菌菌株,并且近年来多重耐药率大幅上升。在此,我们报告双组分调节系统BaeSR通过诱导药物外排系统增加沙门氏菌对多种药物和金属的抗性。筛选基因组DNA的随机片段以寻找增加肠炎沙门氏菌对β-内酰胺抗性的能力,导致分离出一个含有baeR的质粒,baeR编码BaeSR的应答调节子。当baeR过表达时,它显著增加了缺失acrB菌株对苯唑西林、氯唑西林和萘夫西林的抗性。baeR过表达赋予沙门氏菌对新生霉素和脱氧胆酸盐以及β-内酰胺的抗性。baeR过表达引起的耐药性增加被多功能外膜通道基因tolC的缺失完全抑制。TolC与不同的药物外排系统相互作用。在沙门氏菌的九个药物外排系统中,定量实时PCR分析表明BaeR诱导acrD和mdtABC的表达。这两个基因的双缺失完全抑制了BaeR介导的多重耐药性,而单个基因的缺失则没有。acrD和mdtABC的启动子区域含有应答调节子BaeR的结合位点,BaeR响应吲哚、铜和锌激活acrD和mdtABC的转录。除了在多重耐药中的作用外,我们还发现BaeSR、AcrD和MdtABC有助于沙门氏菌对铜和锌的抗性。我们的结果表明,BaeSR系统通过诱导AcrD和MdtABC药物外排系统增加沙门氏菌对多种药物和金属的抗性。我们发现AcrD和MdtABC多重药物外排系统在金属抗性方面有一个以前未被描述的生理作用。