Kletsov Aleksey, Dahnovsky Yuri
Department of Physics and Astronomy/3905, 1000 E. University Avenue, University of Wyoming, Laramie, WY 82071, USA.
J Chem Phys. 2007 Oct 14;127(14):144716. doi: 10.1063/1.2786099.
In this work we study current-voltage characteristics in transport molecular junctions with a 1,4-benzene dithiol molecule as a bridge by using different ab initio electron propagator methods such as OVGF and P3 which are both programs in a Gaussian software package. The current-voltage characteristics are calculated for different values of Fermi energy in various basis sets such as 6-311++G(p,d) and cc-pVDZ and are compared with the experimental data. A good agreement is found in almost the entire voltage range. In addition, the results of our calculations indicate that the accuracy of ab initio electron propagator methods is in the range of 0.2-0.3 eV. Since the computational methods are truly ab initio, implying no adjustable parameters, functions, or functionals, the theoretical predictions can be improved only by changing the model of a transport device. The current-voltage characteristics predict peaks, i.e., negative differential resistances, for the various values of Fermi energy. As shown, the origin of the negative differential resistances is related to the voltage dependences of overlap integrals for the active terminal orbitals, expansion coefficients of partial atomic wavefunctions in Dyson orbitals, and the voltage dependences of Dyson poles (ionization potentials). We find that two peak behavior in the current-voltage characteristics can be explained by the anharmonicity of potential energy surfaces. As a result of our studies, we predict that negative differential resistances can be experimentally found by changing a position of Fermi level, i.e., by using different metal electrodes coated by a gold atomic monolayer.
在这项工作中,我们使用不同的从头算电子传播子方法,如OVGF和P3(它们都是高斯软件包中的程序),以1,4 - 苯二硫醇分子作为桥来研究传输分子结中的电流 - 电压特性。针对不同的费米能量值,在诸如6 - 311++G(p,d)和cc - pVDZ等各种基组下计算电流 - 电压特性,并与实验数据进行比较。在几乎整个电压范围内都发现了良好的一致性。此外,我们的计算结果表明,从头算电子传播子方法的精度在0.2 - 0.3电子伏特范围内。由于计算方法是真正的从头算,这意味着没有可调整的参数、函数或泛函,理论预测只能通过改变传输器件的模型来改进。电流 - 电压特性预测了不同费米能量值下的峰值,即负微分电阻。如图所示,负微分电阻的起源与活性终端轨道重叠积分的电压依赖性、戴森轨道中部分原子波函数的展开系数以及戴森极点(电离势)的电压依赖性有关。我们发现电流 - 电压特性中的双峰行为可以通过势能面的非谐性来解释。作为我们研究的结果,我们预测通过改变费米能级的位置,即使用涂有金原子单层的不同金属电极,可以在实验中发现负微分电阻。