Suppr超能文献

用于测量混合群体生物膜细菌空间异质性的多分辨率边界分割

Multi-resolution border segmentation for measuring spatial heterogeneity of mixed population biofilm bacteria.

作者信息

Belkasim Saeid, Derado Gordana, Aznita Rizi, Gilbert Eric, O'Connell Heather

机构信息

Georgia State University, University Plaza, Atlanta, GA 30303-3083, United States.

出版信息

Comput Med Imaging Graph. 2008 Jan;32(1):11-6. doi: 10.1016/j.compmedimag.2007.08.007. Epub 2007 Oct 23.

Abstract

Multi-resolution image clustering and segmentation interactive system has been developed to analyze the interaction between clusters of heterogeneous microbial populations residing in biofilms. Biofilms are biological microorganisms attached to surfaces, which develop a complex heterogeneous three-dimensional structure. The hierarchical structural analysis concept underlying multi-resolution image segmentation is that the clusters will be more complex and noisy for higher-resolution while less complex and smoother for lower-resolution image. This hierarchical structure analysis can be used to simplify the image storage and retrieval in well-mixed populations. We are proposing an algorithm that combines Fuzzy C-Means, SOM and LVQ neural networks to segment and identify clusters. The outcome of the image segmentation is quantified by the number of cluster objects of each kind of microorganism within sections of the biofilm, and the centroid distances between the identified cluster objects. Experimental evaluations of the algorithm showed its effectiveness in enumerating cluster objects of bacteria in dual-species biofilms at the substratum and measuring the associated intercellular distances.

摘要

多分辨率图像聚类与分割交互系统已被开发出来,用于分析生物膜中异质微生物群体簇之间的相互作用。生物膜是附着在表面的生物微生物,它们形成复杂的异质三维结构。多分辨率图像分割所基于的分层结构分析概念是,对于高分辨率图像,簇会更复杂且噪声更大,而对于低分辨率图像,簇则不太复杂且更平滑。这种分层结构分析可用于简化均匀混合群体中的图像存储和检索。我们提出了一种结合模糊C均值、自组织映射(SOM)和学习向量量化(LVQ)神经网络的算法来分割和识别簇。图像分割的结果通过生物膜切片内每种微生物的簇对象数量以及所识别的簇对象之间的质心距离来量化。该算法的实验评估表明,它在枚举基质上双物种生物膜中的细菌簇对象以及测量相关的细胞间距离方面是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验