Scheres Sjors H W, Núñez-Ramírez Rafael, Gómez-Llorente Yacob, San Martín Carmen, Eggermont Paul P B, Carazo José María
Centro Nacional de Biotecnología CSIC, Cantoblanco, 28049, Madrid, Spain.
Structure. 2007 Oct;15(10):1167-77. doi: 10.1016/j.str.2007.09.003.
The coexistence of multiple distinct structural states often obstructs the application of three-dimensional cryo-electron microscopy to large macromolecular complexes. Maximum likelihood approaches are emerging as robust tools for solving the image classification problems that are posed by such samples. Here, we propose a statistical data model that allows for a description of the experimental image formation within the formulation of 2D and 3D maximum-likelihood refinement. The proposed approach comprises a formulation of the probability calculations in Fourier space, including a spatial frequency-dependent noise model and a description of defocus-dependent imaging effects. The Expectation-Maximization-like algorithms presented are generally applicable to the alignment and classification of structurally heterogeneous projection data. Their effectiveness is demonstrated with various examples, including 2D classification of top views of the archaeal helicase MCM and 3D classification of 70S E. coli ribosome and Simian Virus 40 large T-antigen projections.
多种不同结构状态的共存常常阻碍三维冷冻电子显微镜在大型大分子复合物中的应用。最大似然法正逐渐成为解决此类样本所带来的图像分类问题的稳健工具。在此,我们提出一种统计数据模型,该模型能够在二维和三维最大似然精修的框架内描述实验图像的形成过程。所提出的方法包括在傅里叶空间中进行概率计算的公式,其中包含空间频率相关的噪声模型以及散焦相关成像效应的描述。所呈现的类似期望最大化的算法通常适用于结构异质投影数据的对齐和分类。通过各种示例展示了它们的有效性,包括古菌解旋酶MCM顶视图的二维分类、70S大肠杆菌核糖体和猿猴病毒40大T抗原投影的三维分类。