Stougaard Magnus, Lohmann Jakob S, Zajac Magdalena, Hamilton-Dutoit Stephen, Koch Jørn
Institute of Pathology, Aarhus University Hospital, Nørrebrogade 44 building 18A, DK-8000 Aarhus C, Denmark.
BMC Biotechnol. 2007 Oct 18;7:69. doi: 10.1186/1472-6750-7-69.
In situ detection is traditionally performed with long labeled probes often followed by a signal amplification step to enhance the labeling. Whilst short probes have several advantages over long probes (e.g. higher resolution and specificity) they carry fewer labels per molecule and therefore require higher amplification for detection. Furthermore, short probes relying only on hybridization for specificity can result in non-specific signals appearing anywhere the probe attaches to the target specimen. One way to obtain high amplification whilst minimizing the risk of false positivity is to use small circular probes (e.g. Padlock Probes) in combination with target primed rolling circle DNA synthesis. This has previously been used for DNA detection in situ, but not until now for RNA targets.
We present here a proof of principle investigation of a novel rolling circle technology for the detection of non-polyadenylated RNA molecules in situ, including a new probe format (the Turtle Probe) and optimized procedures for its use on formalin fixed paraffin embedded tissue sections and in solid support format applications.
The method presented combines the high discriminatory power of short oligonucleotide probes with the impressive amplification power and selectivity of the rolling circle reaction, providing excellent signal to noise ratios in combination with exact target localization due to the target primed reaction. Furthermore, the procedure is easily multiplexed, allowing visualization of several different RNAs.
传统的原位检测是使用长标记探针进行,通常随后进行信号放大步骤以增强标记。虽然短探针相对于长探针有几个优点(例如更高的分辨率和特异性),但每个分子携带的标记较少,因此检测需要更高的放大倍数。此外,仅依靠杂交来保证特异性的短探针可能会在探针附着到目标标本的任何位置产生非特异性信号。一种在最小化假阳性风险的同时获得高放大倍数的方法是将小环形探针(例如锁式探针)与靶标引发的滚环DNA合成相结合。此前这种方法已用于DNA原位检测,但直到现在才用于RNA靶标。
我们在此展示了一种用于原位检测非聚腺苷酸化RNA分子的新型滚环技术的原理验证研究,包括一种新的探针形式(海龟探针)以及在福尔马林固定石蜡包埋组织切片和固体支持物形式应用中使用它的优化程序。
所提出的方法将短寡核苷酸探针的高鉴别能力与滚环反应令人印象深刻的放大能力和选择性相结合,由于靶标引发反应,在提供出色的信噪比的同时实现精确的靶标定位。此外,该程序易于进行多重检测,允许可视化几种不同的RNA。