Chang Ruey-Feng, Chang-Chien Kuang-Che, Takada Etsuo, Suri Jasjit S, Moon Woo Kyung, Wu Jeffery H K, Cho Nariya, Wang Yi-Fa, Chen Dar-Ren
Dept. of Comput. & Inf. Technol., Nat. Chung Chen Univ., Chiayi, Taiwan.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2795-8. doi: 10.1109/IEMBS.2006.260217.
The breast density information is one of important factors for estimating the risk in breast cancer detection and early prevention. In this paper, we present two methods, including threshold-based and proportion-based, to automatically analyze the breast density using whole breast ultrasound. The two algorithms are experimented with 32 cases which are scanned from 32 patients using the US machine SSD-5500 with a recent developed scanner ASU-1004 (Aloka, Japan). The experimental results are graded from 4 (extremely dense tissue) to 1 (almost entirely fat), and respectively compared with the majority grades of three radiologists. The accuracy of the threshold-based and proportion-based strategies is 88% and 84% respectively.
乳腺密度信息是乳腺癌检测和早期预防中评估风险的重要因素之一。在本文中,我们提出了两种方法,包括基于阈值的方法和基于比例的方法,用于使用全乳超声自动分析乳腺密度。这两种算法在32例病例上进行了实验,这些病例是使用带有最新开发的扫描仪ASU - 1004(日本阿洛卡)的SSD - 5500超声机器对32名患者进行扫描得到的。实验结果从4级(极致密组织)到1级(几乎全是脂肪)进行分级,并分别与三位放射科医生的多数分级进行比较。基于阈值的策略和基于比例的策略的准确率分别为88%和84%。