Slabaugh Greg, Unal Gozde, Chang Ti-Chiun
Siemens Corporate Res., Princeton, NJ 08540, USA.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2638-42. doi: 10.1109/IEMBS.2006.260254.
The detection of image features is an essential component of medical image processing, and has wide-ranging applications including adaptive filtering, segmentation, and registration. In this paper, we present an information-theoretic approach to feature detection in ultrasound images. Ultrasound images are corrupted by speckle noise, which is a disruptive random pattern that obscures the features of interest. Using theoretical probability density functions of the speckle intensity distributions, we derive analytic expressions that measure the distance between distributions taken from different regions in an ultrasound image and use these distances to detect features. We compare the technique to classic gradient-based feature detection methods.
图像特征检测是医学图像处理的一个重要组成部分,具有广泛的应用,包括自适应滤波、分割和配准。在本文中,我们提出了一种信息论方法来检测超声图像中的特征。超声图像会受到斑点噪声的干扰,斑点噪声是一种干扰性的随机模式,会掩盖感兴趣的特征。利用斑点强度分布的理论概率密度函数,我们推导了用于测量超声图像中不同区域分布之间距离的解析表达式,并使用这些距离来检测特征。我们将该技术与基于经典梯度的特征检测方法进行了比较。