Krajnak Michael, Xue Joel
GE Healthcare Information Technology, Milwaukee, WI 53226. USA.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5173-6. doi: 10.1109/IEMBS.2006.260366.
In this paper, we present a technique for optimizing a fuzzy system using a genetic algorithm that works for patient status monitoring in the operating room. The genetic algorithm adjusts rule weights, outputs, and input membership functions to maximize the area under a receiver operator curve (ROC) for final classification. Compared to pre-optimization, the optimized fuzzy inference system increased ROC area from 0.68 to 0.77, which can be translated to an increase in specificity from 74% to 82%, at a fixed sensitivity of 58%
在本文中,我们提出了一种使用遗传算法优化模糊系统的技术,该技术用于手术室中的患者状态监测。遗传算法调整规则权重、输出和输入隶属函数,以最大化最终分类的接收者操作特征曲线(ROC)下的面积。与优化前相比,优化后的模糊推理系统将ROC面积从0.68提高到0.77,在固定灵敏度为58%的情况下,这可以转化为特异性从74%提高到82%。